2016
Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion*
Dong K, Yan Q, Lu M, Wan L, Hu H, Guo J, Boulpaep E, Wang W, Giebisch G, Hebert SC, Wang T. Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion*. Journal Of Biological Chemistry 2016, 291: 5259-5269. PMID: 26728465, PMCID: PMC4777858, DOI: 10.1074/jbc.m115.707877.Peer-Reviewed Original Research
2010
Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA–regulated apical chloride channels in cortical collecting duct
Lu M, Dong K, Egan ME, Giebisch GH, Boulpaep EL, Hebert SC. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA–regulated apical chloride channels in cortical collecting duct. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 6082-6087. PMID: 20231442, PMCID: PMC2851921, DOI: 10.1073/pnas.0902661107.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBenzoatesChloride ChannelsCyclic AMPCyclic AMP-Dependent Protein KinasesCystic Fibrosis Transmembrane Conductance RegulatorFemaleIn Vitro TechniquesKidney CortexKidney Tubules, CollectingKineticsMiceMice, Inbred C57BLMice, Inbred CFTRMice, KnockoutMice, TransgenicMutationOocytesPatch-Clamp TechniquesPotassium Channels, Inwardly RectifyingRecombinant ProteinsThiazolidinesXenopus laevisConceptsCystic fibrosis transmembrane conductance regulatorFibrosis transmembrane conductance regulatorTransmembrane conductance regulatorCl- channel activityConductance regulatorCl- channelsApical membrane proteinsExpression of CFTRChannel activityCFTR Cl- channelApical chloride channelApical cell membraneDeltaF508 CFTR mutationMembrane proteinsCatalytic subunitXenopus laevis oocytesForm proteinPrincipal cellsCFTR channelsROMK null miceApical patchesApical membraneSingle-channel conductanceChloride channelsCell membrane
2009
Protein-protein interactions among ion channels regulate ion transport in the kidney.
Boulpaep E. Protein-protein interactions among ion channels regulate ion transport in the kidney. Bulletin Et Mémoires De L'Académie Royale De Médecine De Belgique 2009, 164: 133-41; discussion 141-2. PMID: 20120088.Peer-Reviewed Original ResearchConceptsAMP kinaseProtein CFTRCFTR channel gatingMembrane transport proteinsProtein-protein interactionsMembrane-attached proteinsSerine-threonine kinaseRegulation of transportKir 1.1Mg-ATPIon transportExtracellular agonistsMembrane proteinsTransport proteinsChannel gatingIntracellular ATP concentrationIntracellular messengerMembrane receptorsCFTRMetabolic signalsIon channelsChloride channelsEpithelial ion transportDirect interactionRenal K secretion
2006
CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney
Lu M, Leng Q, Egan ME, Caplan MJ, Boulpaep EL, Giebisch GH, Hebert SC. CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney. Journal Of Clinical Investigation 2006, 116: 797-807. PMID: 16470247, PMCID: PMC1361349, DOI: 10.1172/jci26961.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsCurcuminCyclic AMP-Dependent Protein KinasesCystic Fibrosis Transmembrane Conductance RegulatorHydrogen-Ion ConcentrationKidneyMiceMice, Inbred C57BLMice, Inbred CFTRMice, TransgenicMutationOocytesPatch-Clamp TechniquesPotassium Channels, Inwardly RectifyingXenopus laevisConceptsFunctional switchCystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channelATP sensitivityEffects of CFTRThick ascending limbPotential physiological rolePKA activityRenal K channelsCystic fibrosisPhysiological roleSecretory channelsK channelsRenal tubule epithelial cellsApical membraneCFTRDeltaF508 mutationDistal nephron segmentsCl- channelsK homeostasisTubule epithelial cellsEpithelial cellsTAL cellsPotassium channelsK handlingGlibenclamide sensitivity
2005
Requirement of Voltage-Gated Calcium Channel ß4 Subunit for T Lymphocyte Functions
Badou A, Basavappa S, Desai R, Peng YQ, Matza D, Mehal WZ, Kaczmarek LK, Boulpaep EL, Flavell RA. Requirement of Voltage-Gated Calcium Channel ß4 Subunit for T Lymphocyte Functions. Science 2005, 307: 117-121. PMID: 15637280, DOI: 10.1126/science.1100582.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalciumCalcium Channels, L-TypeCalcium SignalingCD4-Positive T-LymphocytesCytokinesDNA-Binding ProteinsIon Channel GatingLymphocyte ActivationMembrane PotentialsMiceMice, Inbred C3HMice, Inbred C57BLMutationNFATC Transcription FactorsNuclear ProteinsPatch-Clamp TechniquesPhosphorylationProtein SubunitsReceptors, Antigen, T-CellT-LymphocytesTranscription FactorsConceptsT lymphocytesCalcium channelsVoltage-gated calcium channelsT lymphocyte functionT cell receptor stimulationCell receptor stimulationCytokine productionLymphocyte functionCalcium influxReceptor stimulationCalcium responseCalcium entryTranscription factor NFATCav1 channelsLymphocytesAlpha1 subunitCav channelsNormal functionNonexcitable cellsDisplay impairmentsExcitable cellsChannel openingMolecular identityDiverse physiological processesPhysiological processes
2004
Paracellular Cl- permeability is regulated by WNK4 kinase: Insight into normal physiology and hypertension
Kahle KT, MacGregor GG, Wilson FH, Van Hoek AN, Brown D, Ardito T, Kashgarian M, Giebisch G, Hebert SC, Boulpaep EL, Lifton RP. Paracellular Cl- permeability is regulated by WNK4 kinase: Insight into normal physiology and hypertension. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 14877-14882. PMID: 15465913, PMCID: PMC522037, DOI: 10.1073/pnas.0406172101.Peer-Reviewed Original ResearchConceptsPseudohypoaldosteronism type IIPHAII-mutant WNK4Paracellular fluxPotent antihypertensive agentTight junction proteinsTight junctionsAntihypertensive agentsParacellular ion fluxPharmacologic propertiesTight junction structureTranscellular transportersWild-type WNK4Normal physiologyHypertensionTransepithelial resistanceWNK signalingKidney epitheliumTight junction formationParacellular pathwayWNK4Effect of WNK4EpitheliumType IIWNK4 kinaseHomeostasisCharacteristics of renal Rhbg as an NH4+ transporter
Nakhoul N, DeJong H, Abdulnour-Nakhoul S, Boulpaep E, Hering-Smith K, Hamm L. Characteristics of renal Rhbg as an NH4+ transporter. American Journal Of Physiology. Renal Physiology 2004, 288: f170-f181. PMID: 15353405, DOI: 10.1152/ajprenal.00419.2003.Peer-Reviewed Original Research
1996
Molecular cloning of a glibenclamide-sensitive, voltage-gated potassium channel expressed in rabbit kidney.
Yao X, Chang AY, Boulpaep EL, Segal AS, Desir GV. Molecular cloning of a glibenclamide-sensitive, voltage-gated potassium channel expressed in rabbit kidney. Journal Of Clinical Investigation 1996, 97: 2525-2533. PMID: 8647945, PMCID: PMC507338, DOI: 10.1172/jci118700.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceBrainCloning, MolecularDNA PrimersFemaleGenetic VariationGenomic LibraryGlyburideHumansKidney MedullaKv1.3 Potassium ChannelMiceModels, BiologicalMolecular Sequence DataOocytesPancreatitis-Associated ProteinsPhylogenyPolymerase Chain ReactionPotassium ChannelsPotassium Channels, Voltage-GatedRabbitsRecombinant ProteinsSequence Homology, Amino AcidXenopus laevisConceptsVoltage-gated potassium channelsMolecular cloningFunctional expressionShaker-like potassium channelsPotassium channelsShaker geneGRB-PAP1Novel memberAmino terminusMolecular evidenceShaker channelsAmino acidsXenopus oocytesRabbit kidneyRenal potassium transportCloningGenesPotassium transportChannel clonesFirst reportRabbit brainPotassium conductanceFamilyExpressionKidney
1995
A Calcium-activated and nucleotide-sensitive nonselective cation channel in M-1 mouse cortical collecting duct cells
Korbmacher C, Volk T, Segal A, Boulpaep E, Frömter E. A Calcium-activated and nucleotide-sensitive nonselective cation channel in M-1 mouse cortical collecting duct cells. The Journal Of Membrane Biology 1995, 146: 29-45. PMID: 7563035, DOI: 10.1007/bf00232678.Peer-Reviewed Original ResearchConceptsSensitive nonselective cation channelNSC channelNonselective cation channelsDuct cellsAmiloride-sensitive sodium absorptionCation channelsChannel activityAdenine nucleotidesVoltage-dependent blockCalcium entryNonselective cation channel activitySodium absorptionCation channel activityCytoplasmic calciumInhibitory effectSpecial physiological conditionsCytoplasmic applicationMiceCGMP-dependent protein kinaseFlufenamic acidSingle-channel current recordingsMajor routeVolume regulationCurrent recordingsCGMP
1993
Whole-cell currents in single and confluent M-1 mouse cortical collecting duct cells.
Korbmacher C, Segal A, Fejes-Tóth G, Giebisch G, Boulpaep E. Whole-cell currents in single and confluent M-1 mouse cortical collecting duct cells. The Journal Of General Physiology 1993, 102: 761-793. PMID: 8270912, PMCID: PMC2229168, DOI: 10.1085/jgp.102.4.761.Peer-Reviewed Original ResearchConceptsWhole-cell currentsWhole-cell conductanceConfluent cellsWhole-cell membrane currentsBasolateral K channelsCells 24 hK conductancePA/cellMicroM glibenclamideAmiloride-sensitive conductanceTransgenic miceReabsorb sodiumOutward currentsM amilorideGlibenclamide inhibitionDuct cellsPrincipal cellsMembrane currentsBath KLarge depolarizationChloride conductanceK channelsLipophilic drugsPermeable supportsMiceEndothelin increases [Ca2+]i in M-1 mouse cortical collecting duct cells by a dual mechanism
Korbmacher C, Boulpaep E, Giebisch G, Geibel J. Endothelin increases [Ca2+]i in M-1 mouse cortical collecting duct cells by a dual mechanism. American Journal Of Physiology 1993, 265: c349-c357. PMID: 8368264, DOI: 10.1152/ajpcell.1993.265.2.c349.Peer-Reviewed Original ResearchConceptsEndothelin-1Intracellular storesDuct cellsNifedipine-sensitive Ca2Intracellular calcium concentrationParticipation of Ca2Endothelin increaseFura-2Extracellular calciumExtracellular Ca2Arginine vasopressinIntracellular Ca2Calcium concentrationInitial Ca2Fluorescent imaging systemInitial exposurePlateau phaseMiceEntry mechanismDual mechanismCa2Second Ca2CellsNifedipineVasopressin
1992
Mouse cortical collecting duct cells show nonselective cation channel activity and express a gene related to the cGMP-gated rod photoreceptor channel.
Ahmad I, Korbmacher C, Segal A, Cheung P, Boulpaep E, Barnstable C. Mouse cortical collecting duct cells show nonselective cation channel activity and express a gene related to the cGMP-gated rod photoreceptor channel. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 10262-10266. PMID: 1279673, PMCID: PMC50318, DOI: 10.1073/pnas.89.21.10262.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceBlotting, NorthernCell LineCyclic GMPDNAIon Channel GatingIon ChannelsKidney CortexKidney Tubules, CollectingMembrane PotentialsMiceMolecular Sequence DataOligodeoxyribonucleotidesPhotoreceptor CellsPoly APolymerase Chain ReactionRatsRNARNA, MessengerSequence Homology, Nucleic AcidConceptsNonselective cation channelsPhotoreceptor channelDuct cellsCation channel probeCation channelsChannel activityPolymerase chain reactionNonselective cation channel activityCGMP decreaseCation channel activityChannel subunitsCytoplasmic applicationChain reactionRod photoreceptorsNorthern blot analysisRetinal cGMPBlot analysisCGMPRat kidney cDNA libraryChannel genesMiceSingle-channel conductanceOpen probabilityCellsCalcium removal