1996
Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme.
Ibba M, Hong K, Sherman J, Sever S, Söll D. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme. Proceedings Of The National Academy Of Sciences Of The United States Of America 1996, 93: 6953-6958. PMID: 8692925, PMCID: PMC38915, DOI: 10.1073/pnas.93.14.6953.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesAnimalsBase SequenceBinding SitesCalorimetryCloning, MolecularConsensus SequenceEscherichia coliHumansKineticsModels, StructuralMolecular Sequence DataNucleic Acid ConformationProtein FoldingRecombinant ProteinsRNA, Transfer, GlnSequence Homology, Nucleic AcidConceptsGlutaminyl-tRNA synthetaseAmino acid affinityAmino acid recognitionEscherichia coli glutaminyl-tRNA synthetaseBase pairsIdentity nucleotidesProtein-RNA interactionsDiscriminator baseE. coli tryptophanyl-tRNA synthetaseAminoacyl-tRNA synthetasesSequence-specific interactionsAcid affinityRecognition sitesAbility of tRNATryptophanyl-tRNA synthetaseTRNA specificityNoncognate substratesTranslational fidelityTRNA recognitionBiochemical functionsRNA recognitionCognate tRNATRNAMajor binding siteNoncognate tRNAsThe C-terminal Extension of Yeast Seryl-tRNA Synthetase Affects Stability of the Enzyme and Its Substrate Affinity (*)
Weygand-Durasevic I, Lenhard B, Filipic S, Söll D. The C-terminal Extension of Yeast Seryl-tRNA Synthetase Affects Stability of the Enzyme and Its Substrate Affinity (*). Journal Of Biological Chemistry 1996, 271: 2455-2461. PMID: 8576207, DOI: 10.1074/jbc.271.5.2455.Peer-Reviewed Original ResearchAminoacyl-tRNA Synthetases Optimize Both Cognate tRNA Recognition and Discrimination against Noncognate tRNAs †
Sherman J, Söll D. Aminoacyl-tRNA Synthetases Optimize Both Cognate tRNA Recognition and Discrimination against Noncognate tRNAs †. Biochemistry 1996, 35: 601-607. PMID: 8555233, DOI: 10.1021/bi951602b.Peer-Reviewed Original ResearchConceptsTRNA recognitionNoncognate tRNAsEscherichia coli glutaminyl-tRNA synthetaseWild-type GlnRSGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesNucleic acid interactionsGlutamine tRNAFirst base pairMutational analysisSpecific proteinsTRNAGlnRSequence preferenceMutantsBase pairsAcid interactionsDecreased affinityVivoTRNAGlnAffinitySynthetasesProteinSynthetaseCrystal structure
1994
Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase.
Rogers M, Adachi T, Inokuchi H, Söll D. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase. Proceedings Of The National Academy Of Sciences Of The United States Of America 1994, 91: 291-295. PMID: 7506418, PMCID: PMC42933, DOI: 10.1073/pnas.91.1.291.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino Acyl-tRNA SynthetasesAnticodonBacterial ProteinsEscherichia coliGenes, SuppressorModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedProtein Structure, TertiaryRNA, BacterialRNA, TransferStructure-Activity RelationshipSubstrate SpecificityTransfer RNA AminoacylationConceptsEscherichia coli glutaminyl-tRNA synthetaseGlutaminyl-tRNA synthetaseLys-317Genetic selectionOpal suppressorMutant enzymesWild-type GlnRSAsp-235Anticodon-binding domainSingle amino acid changeSite-directed mutagenesisNumber of mutantsAmino acid changesRecognition of tRNAGlnR mutantAnticodon recognitionAdditional mutantsGln mutantGlnRMutantsAcid changesBase pairsSpecificity constantAminoacylationTRNA
1992
Switching tRNA(Gln) identity from glutamine to tryptophan.
Rogers M, Adachi T, Inokuchi H, Söll D. Switching tRNA(Gln) identity from glutamine to tryptophan. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 3463-3467. PMID: 1565639, PMCID: PMC48888, DOI: 10.1073/pnas.89.8.3463.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesAnticodonBase SequenceBeta-GalactosidaseCloning, MolecularEscherichia coliGenes, BacterialGenes, SuppressorGenes, SyntheticGlutamineMolecular Sequence DataMutagenesis, Site-DirectedNucleic Acid ConformationRNA, Transfer, GlnSuppression, GeneticTetrahydrofolate DehydrogenaseTryptophanConceptsOpal suppressorEscherichia coli glutaminyl-tRNA synthetaseAccuracy of aminoacylationGlutaminyl-tRNA synthetaseN-terminal sequence analysisEfficient suppressorYeast mitochondriaRespective tRNAsUCA anticodonAmber suppressorFol geneUGA codonUGA mutationsSequence analysisAlanine insertionAnticodonGenetic selectionBase pairsBase substitutionsSuppressorTRNATrpRSDihydrofolate reductasePosition 35Mutations
1988
Discrimination between glutaminyl-tRNA synthetase and seryl-tRNA synthetase involves nucleotides in the acceptor helix of tRNA.
Rogers M, Söll D. Discrimination between glutaminyl-tRNA synthetase and seryl-tRNA synthetase involves nucleotides in the acceptor helix of tRNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 1988, 85: 6627-6631. PMID: 3045821, PMCID: PMC282030, DOI: 10.1073/pnas.85.18.6627.Peer-Reviewed Original Research
1984
The sup8 tRNALeu gene of Schizosaccharomyces pombe has an unusual intervening sequence and reduced pairing in the anticodon stem
Sumner-Smith M, Hottinger H, Willis I, Koch T, Arentzen R, Söll D. The sup8 tRNALeu gene of Schizosaccharomyces pombe has an unusual intervening sequence and reduced pairing in the anticodon stem. Molecular Genetics And Genomics 1984, 197: 447-452. PMID: 6597338, DOI: 10.1007/bf00329941.Peer-Reviewed Original ResearchConceptsTRNA genesS. pombe DNAWild-type alleleAnticodon UCASplicing endonucleaseSuppressor allelesSchizosaccharomyces pombeTRNALeu geneUUA codonTrailer sequencesIntervening sequenceCell-free extractsAnticodon stemRelated sequencesSplice siteBase pairsSecondary structureGenesIsoacceptorsAllelesSequenceStructural requirementsPombeAnticodonSup8The extent of a eukaryotic tRNA gene. 5‘- and 3‘-flanking sequence dependence for transcription and stable complex formation.
Schaack J, Sharp S, Dingermann T, Burke DJ, Cooley L, Söll D. The extent of a eukaryotic tRNA gene. 5‘- and 3‘-flanking sequence dependence for transcription and stable complex formation. Journal Of Biological Chemistry 1984, 259: 1461-1467. PMID: 6693417, DOI: 10.1016/s0021-9258(17)43429-6.Peer-Reviewed Original ResearchConceptsStable complex formationBase pairsDrosophila Kc cell extractSequence requirementsCell extractsEukaryotic tRNA genesStable transcription complexesHeLa cell extractsTRNA genesComplex formationTranscription complexArg genesEfficient transcriptionTranscription assaysTranscription propertiesCell-free extractsTranscriptionHomologous systemGenesSequenceSequence dependenceCellular sourceExtractAssaysPairs
1983
Six Schizosaccharomyces pombe tRNA genes including a gene for a tRNA Lys with an intervening sequence which cannot base-pair with the anticodon
Gamulin V, Mao J, Appel B, Sumner-Smith M, Yamao F, Söll D. Six Schizosaccharomyces pombe tRNA genes including a gene for a tRNA Lys with an intervening sequence which cannot base-pair with the anticodon. Nucleic Acids Research 1983, 11: 8537-8546. PMID: 6561518, PMCID: PMC326605, DOI: 10.1093/nar/11.24.8537.Peer-Reviewed Original Research
1982
The 5S RNA genes of Schizosaccharomyces pombe
Mao J, Appel B, Schaack J, Sharp S, Yamada H, Söll D. The 5S RNA genes of Schizosaccharomyces pombe. Nucleic Acids Research 1982, 10: 487-500. PMID: 6278416, PMCID: PMC326152, DOI: 10.1093/nar/10.2.487.Peer-Reviewed Original Research