2021
Podocyte Glucocorticoid Receptors Are Essential for Glomerular Endothelial Cell Homeostasis in Diabetes Mellitus
Srivastava SP, Zhou H, Setia O, Dardik A, Fernandez‐Hernando C, Goodwin J. Podocyte Glucocorticoid Receptors Are Essential for Glomerular Endothelial Cell Homeostasis in Diabetes Mellitus. Journal Of The American Heart Association 2021, 10: e019437. PMID: 34308664, PMCID: PMC8475689, DOI: 10.1161/jaha.120.019437.Peer-Reviewed Original ResearchConceptsDiabetic nephropathySegmental fibrosisFatty acid metabolismDiabetes mellitusEndothelial cellsPrimary podocytesReceptor knockout micePathogenesis of proteinuriaAdministration of streptozotocinProfibrotic gene expressionAcid metabolismGlomerular endothelial cellsSmooth muscle actinEndothelial cell homeostasisCarnitine palmitoyltransferase 1AFatty acid oxidationBackground ProteinuriaWorsened fibrosisClinical characteristicsFibrotic featuresGlomerular fibrosisGlomerular homeostasisPatient managementControl littermatesSevere diseaseMicroRNA regulation of cholesterol metabolism
Citrin KM, Fernández‐Hernando C, Suárez Y. MicroRNA regulation of cholesterol metabolism. Annals Of The New York Academy Of Sciences 2021, 1495: 55-77. PMID: 33521946, PMCID: PMC8938903, DOI: 10.1111/nyas.14566.Peer-Reviewed Original ResearchMeSH KeywordsAtherosclerosisBiological TransportCardiovascular DiseasesCholesterolGene Expression RegulationHumansLipid MetabolismLipoproteins, HDLLipoproteins, LDLLipoproteins, VLDLMicroRNAsConceptsDifferent cell typesCell typesMultiple mRNA targetsCholesterol homeostasisSmall noncoding RNAsMicroRNA activityCholesterol-laden cellsMicroRNA regulationCholesterol metabolismMRNA targetsNoncoding RNAsPosttranscriptional levelGene expressionSpecialized functionsMicroRNAsCurrent knowledgeTarget interactionsHomeostasisMetabolismPathwayExpressionMultiple stagesRNARegulationDistinctive effectsLoss of hepatic miR-33 improves metabolic homeostasis and liver function without altering body weight or atherosclerosis
Price NL, Zhang X, Fernández-Tussy P, Singh AK, Burnap SA, Rotllan N, Goedeke L, Sun J, Canfrán-Duque A, Aryal B, Mayr M, Suárez Y, Fernández-Hernando C. Loss of hepatic miR-33 improves metabolic homeostasis and liver function without altering body weight or atherosclerosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2006478118. PMID: 33495342, PMCID: PMC7865172, DOI: 10.1073/pnas.2006478118.Peer-Reviewed Original ResearchConceptsMiR-33 deficiencyHDL-C levelsMiR-33Body weightAtherosclerotic plaque sizeAtherosclerotic plaque burdenDevelopment of fibrosisCholesterol transport capacityCholesterol transporter ABCA1High-density lipoprotein biogenesisSREBP2 transcription factorKnockout mouse modelConditional knockout mouse modelPlaque burdenCardiometabolic diseasesChow dietLiver functionMetabolic dysfunctionHDL metabolismHyperlipidemic conditionsMouse modelGlucose homeostasisCholesterol effluxLipid metabolismObesity
2018
Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis
Aryal B, Singh AK, Zhang X, Varela L, Rotllan N, Goedeke L, Chaube B, Camporez JP, Vatner DF, Horvath TL, Shulman GI, Suárez Y, Fernández-Hernando C. Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis. JCI Insight 2018, 3: e97918. PMID: 29563332, PMCID: PMC5926923, DOI: 10.1172/jci.insight.97918.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAdipose TissueAllelesAngiopoietin-Like Protein 4AnimalsAtherosclerosisBody WeightChemokinesCytokinesDiet, High-FatDiet, WesternFatty AcidsGene Expression ProfilingGene Expression RegulationGene Knockout TechniquesGlucoseInsulinIntegrasesIntercellular Signaling Peptides and ProteinsLipid MetabolismLipoprotein LipaseLipoproteinsLiverMaleMiceMice, Inbred C57BLMice, KnockoutMusclesObesityProprotein Convertase 9TriglyceridesConceptsAngiopoietin-like protein 4High-fat dietEctopic lipid depositionLipid depositionGlucose toleranceLipoprotein lipaseShort-term high-fat dietSevere metabolic abnormalitiesProgression of atherosclerosisMajor risk factorTriacylglycerol-rich lipoproteinsFatty acid uptakeAdipose tissue resultsProatherogenic lipoproteinsCardiometabolic diseasesMetabolic abnormalitiesKO miceRisk factorsWhole body lipidMetabolic disordersGlucose metabolismLPL activityAdipose tissueGenetic ablationRapid clearanceGenetic Ablation of miR-33 Increases Food Intake, Enhances Adipose Tissue Expansion, and Promotes Obesity and Insulin Resistance
Price NL, Singh AK, Rotllan N, Goedeke L, Wing A, Canfrán-Duque A, Diaz-Ruiz A, Araldi E, Baldán Á, Camporez JP, Suárez Y, Rodeheffer MS, Shulman GI, de Cabo R, Fernández-Hernando C. Genetic Ablation of miR-33 Increases Food Intake, Enhances Adipose Tissue Expansion, and Promotes Obesity and Insulin Resistance. Cell Reports 2018, 22: 2133-2145. PMID: 29466739, PMCID: PMC5860817, DOI: 10.1016/j.celrep.2018.01.074.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAdiposityAnimalsCholesterol, HDLCholesterol, LDLEatingEnzyme ActivationGene DeletionGene Expression RegulationGenetic Predisposition to DiseaseGerm CellsInflammation MediatorsInsulin ResistanceLipid MetabolismLiverMice, Inbred C57BLMicroRNAsModels, BiologicalObesityProtein Kinase C-epsilonSterol Regulatory Element Binding Protein 1ConceptsMiR-33Insulin resistanceFood intakeIncreases food intakeAdipose tissue expansionKey metabolic tissuesWild-type animalsPromotes obesityImpaired lipolysisPair feedingCardiovascular diseaseMetabolic dysfunctionTherapeutic modulationAdipose tissueLipid uptakeMiRNA-based therapiesMetabolic tissuesGenetic ablationTissue expansionMiceObesityTherapyDeleterious effectsDiseasePrevious reports
2015
MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels
Goedeke L, Rotllan N, Canfrán-Duque A, Aranda JF, Ramírez CM, Araldi E, Lin CS, Anderson NN, Wagschal A, de Cabo R, Horton JD, Lasunción MA, Näär AM, Suárez Y, Fernández-Hernando C. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nature Medicine 2015, 21: 1280-1289. PMID: 26437365, PMCID: PMC4711995, DOI: 10.1038/nm.3949.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsATP Binding Cassette Transporter 1Cholesterol, HDLCholesterol, LDLGene Expression RegulationHep G2 CellsHepatocytesHigh-Throughput Screening AssaysHumansLiverMiceMicroRNAsReceptors, LDLRNA Processing, Post-TranscriptionalSignal TransductionSterol Regulatory Element Binding Protein 1Dietary lipids modulate the expression of miR‐107, an miRNA that regulates the circadian system
Daimiel‐Ruiz L, Klett‐Mingo M, Konstantinidou V, Micó V, Aranda JF, García B, Martínez‐Botas J, Dávalos A, Fernández‐Hernando C, Ordovás JM. Dietary lipids modulate the expression of miR‐107, an miRNA that regulates the circadian system. Molecular Nutrition & Food Research 2015, 59: 552-565. PMID: 25522185, PMCID: PMC4591752, DOI: 10.1002/mnfr.201400616.Peer-Reviewed Original ResearchConceptsCardiovascular diseaseMiR-107Cardio-protective effectsType 2 diabetesUnhealthy dietary habitsCircadian rhythmCaco-2 cellsCVD riskConjugated linoleic acidPharmacological treatmentProtective effectDietary habitsMetabolic disordersDietary lipidsPutative target genesDocosahexanoic acidRelevant transcription factorsMultiple metabolic pathwaysRole of miRNAsOwn promoterTranscription factorsTarget genesDiseaseGene resultsGene expression
2012
MicroRNAs regulating lipid metabolism in atherogenesis
Rayner K, Fernandez-Hernando C, Moore K. MicroRNAs regulating lipid metabolism in atherogenesis. Thrombosis And Haemostasis 2012, 107: 642-647. PMID: 22274626, PMCID: PMC3618663, DOI: 10.1160/th11-10-0694.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAtherosclerosisATP Binding Cassette Transporter 1ATP-Binding Cassette TransportersCholesterolDisease Models, AnimalFatty AcidsGene Expression RegulationHumansLipid MetabolismLipoproteins, HDLLipoproteins, VLDLLiverMiceMicroRNAsModels, BiologicalSterol Regulatory Element Binding Protein 1Sterol Regulatory Element Binding Protein 2TriglyceridesConceptsSmall non-coding RNAsImportant post-transcriptional regulatorsCellular sterol levelsPost-transcriptional regulatorsNon-coding RNAsVariety of genesSterol response elementFatty acid homeostasisIntronic microRNAsLipid metabolismFatty acid synthesisHost genesTranscription factorsProtein geneCholesterol exportMetabolic programsKey regulatorFatty acid oxidationResponse elementHigh-density lipoproteinMicroRNAsRelated metabolic diseasesGenesABCA1 pathwayAcid homeostasis
2010
MiR-33 Contributes to the Regulation of Cholesterol Homeostasis
Rayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernández-Hernando C. MiR-33 Contributes to the Regulation of Cholesterol Homeostasis. Science 2010, 328: 1570-1573. PMID: 20466885, PMCID: PMC3114628, DOI: 10.1126/science.1189862.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApolipoprotein A-IATP Binding Cassette Transporter 1ATP Binding Cassette Transporter, Subfamily G, Member 1ATP-Binding Cassette TransportersCarrier ProteinsCell LineCholesterolCholesterol, DietaryDietary FatsGene Expression RegulationHomeostasisHumansHypercholesterolemiaIntracellular Signaling Peptides and ProteinsIntronsLipoproteinsLipoproteins, HDLLiverMacrophagesMacrophages, PeritonealMembrane GlycoproteinsMiceMice, Inbred C57BLMicroRNAsNiemann-Pick C1 ProteinProteinsSterol Regulatory Element Binding Protein 2TransfectionConceptsSterol regulatory element-binding factor-2MiR-33Cellular cholesterol transportCholesterol effluxExpression of genesIntronic microRNAsTranscriptional regulatorsTriphosphate-binding cassette transportersAdenosine triphosphate-binding cassette transportersCellular cholesterol effluxCassette transportersHDL biogenesisHuman cellsCellular levelCholesterol homeostasisABCA1 expressionFactor 2Mouse macrophagesGenesLentiviral deliveryCholesterol transportExpressionABCA1Cholesterol metabolismEfflux