2024
A proteome-wide quantitative platform for nanoscale spatially resolved extraction of membrane proteins into native nanodiscs
Brown C, Ghosh S, McAllister R, Kumar M, Walker G, Sun E, Aman T, Panda A, Kumar S, Li W, Coleman J, Liu Y, Rothman J, Bhattacharyya M, Gupta K. A proteome-wide quantitative platform for nanoscale spatially resolved extraction of membrane proteins into native nanodiscs. Nature Methods 2024, 1-10. PMID: 39609567, DOI: 10.1038/s41592-024-02517-x.Peer-Reviewed Original ResearchTarget membrane proteinsMembrane proteinsMembrane contextSynaptic vesicle membrane proteinVesicle membrane proteinsMammalian membrane proteinsMembrane-active polymersExtraction of membrane proteinsNative nanodiscsOrganellar membranesNative membrane environmentMultiprotein complexesMolecular contextCellular membranesMembrane environmentQuantitative platformBioanalytical approachesExtraction efficiencyOpen-access databasesProteinMembraneExtraction conditionsNanodiscsTarget MPDirect determination of membrane protein lipid complexes from cellular membranes through native top-down MS
Gupta K, Jung W, Panda A, Brown C. Direct determination of membrane protein lipid complexes from cellular membranes through native top-down MS. Biophysical Journal 2024, 123: 450a-451a. DOI: 10.1016/j.bpj.2023.11.2748.Peer-Reviewed Original ResearchCapturing membrane snapshots: A quantitative proteome-wide guide for high-throughput spatially resolved extraction of membrane proteins for structural/functional studies on native membranes
Brown C, Ghosh S, McAllister R, Coleman J, Sun E, Zheng H, Kumar S, Panda A, Rothman J, Bhattacharyya M, Gupta K. Capturing membrane snapshots: A quantitative proteome-wide guide for high-throughput spatially resolved extraction of membrane proteins for structural/functional studies on native membranes. Biophysical Journal 2024, 123: 68a-69a. DOI: 10.1016/j.bpj.2023.11.487.Peer-Reviewed Original Research
2023
Roles for diacylglycerol in synaptic vesicle priming and release revealed by complete reconstitution of core protein machinery
Sundaram R, Chatterjee A, Bera M, Grushin K, Panda A, Li F, Coleman J, Lee S, Ramakrishnan S, Ernst A, Gupta K, Rothman J, Krishnakumar S. Roles for diacylglycerol in synaptic vesicle priming and release revealed by complete reconstitution of core protein machinery. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2309516120. PMID: 37590407, PMCID: PMC10450444, DOI: 10.1073/pnas.2309516120.Peer-Reviewed Original ResearchConceptsCore protein machineryRelease-ready vesiclesSynaptic vesicle primingVesicle primingProtein machinerySingle-molecule imagingSNAREpin assemblyFunctional intermediatesFunctional reconstitutionMunc13DiacylglycerolCoordinated actionMunc18VesiclesMachineryComplete reconstitutionNew roleSelective effectDetailed characterizationChaperonesRate of caReconstitutionVAMP2ComplexinMutationsStudying Membrane Protein–Lipid Specificity through Direct Native Mass Spectrometric Analysis from Tunable Proteoliposomes
Panda A, Brown C, Gupta K. Studying Membrane Protein–Lipid Specificity through Direct Native Mass Spectrometric Analysis from Tunable Proteoliposomes. Journal Of The American Society For Mass Spectrometry 2023, 34: 1917-1927. PMID: 37432128, PMCID: PMC10932607, DOI: 10.1021/jasms.3c00110.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsMembrane proteinsNative mass spectrometryTrafficking pathwaysPlasma membraneEukaryotic integral membrane proteinsEndoplasmic reticulumBiophysical propertiesMembrane protein assemblySynaptic vesiclesCellular trafficking pathwaysOrganellar membranesLipid specificityTransmembrane proteinProtein assembliesMembrane contextMass spectrometric analysisProteinNative mass spectrometric analysesVAMP2Lipid compositionExogenous ligandsLipid membranesIndividual lipidsMembraneDirect determination of oligomeric organization of integral membrane proteins and lipids from intact customizable bilayer
Panda A, Giska F, Duncan A, Welch A, Brown C, McAllister R, Hariharan P, Goder J, Coleman J, Ramakrishnan S, Pincet F, Guan L, Krishnakumar S, Rothman J, Gupta K. Direct determination of oligomeric organization of integral membrane proteins and lipids from intact customizable bilayer. Nature Methods 2023, 20: 891-897. PMID: 37106230, PMCID: PMC10932606, DOI: 10.1038/s41592-023-01864-5.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsMembrane proteinsOligomeric organizationOligomeric stateNative mass spectrometry analysisFunctional oligomeric stateKey membrane componentMass spectrometry analysisNMS analysisTarget membraneLipid bindingMembrane componentsProteolipid vesiclesMembrane compositionLipid compositionSpectrometry analysisLipid membranesNeurotransmitter releaseProteinMembraneLipidsMembrane propertiesDirect determinationBilayersTransporters
2022
A Quantitative Native Mass Spectrometry Platform for Deconstructing Hierarchical Organization of Membrane Proteins and Lipids
Panda A, Giska F, Brown C, Coleman J, Rothman J, Gupta K. A Quantitative Native Mass Spectrometry Platform for Deconstructing Hierarchical Organization of Membrane Proteins and Lipids. The FASEB Journal 2022, 36 DOI: 10.1096/fasebj.2022.36.s1.0r472.Peer-Reviewed Original ResearchMembrane proteinsOligomeric stateSpecific lipidsBiophysical propertiesSugar transporter proteinsPhysiological membranesBacterial plasma membraneTarget membrane proteinsLipid bilayer environmentSynaptic vesicle proteinsLipid compositionMS/MS capabilitiesProtein oligomerizationCellular signalingOligomeric organizationVesicle proteinsMembrane curvaturePlasma membraneMacromolecular assembliesTransporter proteinsNative massOligomeric populationMS/MS analysisRegulatory roleDiverse setAnalysis of Lipid Signaling in Drosophila Photoreceptors using Mass Spectrometry.
Panda A, Thakur R, Kumari A, Raghu P. Analysis of Lipid Signaling in Drosophila Photoreceptors using Mass Spectrometry. Journal Of Visualized Experiments 2022 PMID: 35311809, DOI: 10.3791/63516.Peer-Reviewed Original ResearchConceptsTransient receptor potentialDrosophila photoreceptorsSensory transductionMembrane lipid phosphatidylinositolLipid mass spectrometryLipid phosphatidylinositolDrosophila mutantsLipid signalingSignaling lipidsClasses of lipidsCell biologyPhospholipase CβSpecific lipidsMolecular geneticsLipid speciesPhotoreceptor physiologySuch lipidsMass spectrometryMutantsPhotoreceptorsLipid analysisTransductionModel systemBiologyReceptor potentialA tunable lipid bilayer native MS platform for direct determination of hierarchical organization of membrane proteins and lipids at the membrane
Panda A, Giska F, Brown C, Coleman J, Rothman J, Gupta K. A tunable lipid bilayer native MS platform for direct determination of hierarchical organization of membrane proteins and lipids at the membrane. Biophysical Journal 2022, 121: 312a-313a. DOI: 10.1016/j.bpj.2021.11.1192.Peer-Reviewed Original Research
2019
Regulation of Membrane Turnover by Phosphatidic Acid: Cellular Functions and Disease Implications
Thakur R, Naik A, Panda A, Raghu P. Regulation of Membrane Turnover by Phosphatidic Acid: Cellular Functions and Disease Implications. Frontiers In Cell And Developmental Biology 2019, 7: 83. PMID: 31231646, PMCID: PMC6559011, DOI: 10.3389/fcell.2019.00083.Peer-Reviewed Original ResearchEukaryotic cellsPhosphatidic acidHuman disease geneticsPA functionSingle cell typeNovel genetic modelModel organismsSimplest glycerophospholipidCellular functionsDisease geneticsSignal transductionLipid biosynthesisPhospholipid biosynthesisCell biologyPLD inhibitorsMembrane transportHuman diseasesCell typesDisease implicationsMembrane turnoverGenetic modelsBiosynthesisProteinEnzymeCells
2018
Functional analysis of mammalian phospholipase D enzymes
Panda A, Thakur R, Krishnan H, Naik A, Shinde D, Raghu P. Functional analysis of mammalian phospholipase D enzymes. Bioscience Reports 2018, 38: bsr20181690. PMID: 30369483, PMCID: PMC6435507, DOI: 10.1042/bsr20181690.Peer-Reviewed Original ResearchConceptsHuman PLD2Human PLD1Phospholipase DMammalian genomesPLD genesPhosphatidic acidPA speciesSame biochemical activityMammalian phospholipase DSubplasma membrane regionPhotoreceptor plasma membraneSpecific phospholipase DInvertebrate genomesDistinct subcellular membranesAcyl chain compositionLoss of functionPhylogenetic analysisVesicular transportUnique speciesPlasma membraneSubcellular functionsDistinct isoformsFunctional analysisGenomeBiochemical activityEvidence of sinks and sources in the phospholipase C‐activated PIP2 cycle
Suratekar R, Panda A, Raghu P, Krishna S. Evidence of sinks and sources in the phospholipase C‐activated PIP2 cycle. FEBS Letters 2018, 592: 962-972. PMID: 29427502, DOI: 10.1002/1873-3468.12998.Peer-Reviewed Original Research
2016
Phospholipase D activity couples plasma membrane endocytosis with retromer dependent recycling
Thakur R, Panda A, Coessens E, Raj N, Yadav S, Balakrishnan S, Zhang Q, Georgiev P, Basak B, Pasricha R, Wakelam M, Ktistakis N, Raghu P. Phospholipase D activity couples plasma membrane endocytosis with retromer dependent recycling. ELife 2016, 5: e18515. PMID: 27848911, PMCID: PMC5125754, DOI: 10.7554/elife.18515.Peer-Reviewed Original ResearchMeSH KeywordsADP-Ribosylation Factor 1AnimalsCell MembraneCytoplasmic VesiclesDrosophila melanogasterDrosophila ProteinsEndocytosisGene ExpressionGenetic Complementation TestGuanosine TriphosphateLightPhosphatidic AcidsPhospholipase DPhotic StimulationPhotoreceptor Cells, InvertebrateRab GTP-Binding ProteinsRab7 GTP-Binding ProteinsRhodopsinVision, OcularConceptsPlasma membranePLD activityRetromer-dependent recyclingWild-type photoreceptorsMembrane endocytosisDependent recyclingPhospholipase D activityPhosphatidic acidRhabdomere sizeRhodopsin proteinEndocytosisCell bodiesPhotoreceptorsReduced levelsActivity couplesD activityComplex functionsMembraneTurnoverRab7ProteinVesiclesPhenotypeConsequent changesActivity
2015
Transbilayer Lipid Interactions Mediate Nanoclustering of Lipid-Anchored Proteins
Raghupathy R, Anilkumar A, Polley A, Singh P, Yadav M, Johnson C, Suryawanshi S, Saikam V, Sawant S, Panda A, Guo Z, Vishwakarma R, Rao M, Mayor S. Transbilayer Lipid Interactions Mediate Nanoclustering of Lipid-Anchored Proteins. Cell 2015, 161: 581-594. PMID: 25910209, PMCID: PMC4651428, DOI: 10.1016/j.cell.2015.03.048.Peer-Reviewed Original ResearchConceptsLive cell membranesCell membraneDynamic actin filamentsInner leafletLiquid-ordered phaseAtom molecular dynamics simulationsActin filamentsLipid domainsGeneral mechanismTransbilayer couplingOpposite leafletLipid clustersAcyl chain lipidsProteinPhosphatidylserineLipidsMembraneMolecular dynamics simulationsLeafletsNanoclusteringCorresponding lipidsDomainGPIInteractionDynamics simulationsRDGBα, a PtdIns-PtdOH transfer protein, regulates G-protein-coupled PtdIns(4,5)P2 signalling during Drosophila phototransduction
Yadav S, Garner K, Georgiev P, Li M, Gomez-Espinosa E, Panda A, Mathre S, Okkenhaug H, Cockcroft S, Raghu P. RDGBα, a PtdIns-PtdOH transfer protein, regulates G-protein-coupled PtdIns(4,5)P2 signalling during Drosophila phototransduction. Journal Of Cell Science 2015, 128: 3330-3344. PMID: 26203165, PMCID: PMC4582195, DOI: 10.1242/jcs.173476.Peer-Reviewed Original ResearchConceptsPhospholipase CPlasma membraneEndoplasmic reticulumMulti-domain proteinsPlasma membrane lipidsExchange of lipidsRdgB functionDrosophila phototransductionDrosophila photoreceptorsProtein domainsRdgB mutantsVivo functionMembrane lipidsPtdInsLipid intermediatesLipid homeostasisMembrane receptorsPLC activationPtdOH levelsTransfer proteinPhosphatidic acidPLC activityPhototransductionNormal phototransductionPtdOH