2024
Dual Orthogonally Polarized Lasing Assisted by Imaginary Fermi Arcs in Organic Microcavities
Long T, Ren J, Li P, Yun F, Malpuech G, Solnyshkov D, Fu H, Li F, Liao Q. Dual Orthogonally Polarized Lasing Assisted by Imaginary Fermi Arcs in Organic Microcavities. Physical Review Letters 2024, 133: 123802. PMID: 39373430, DOI: 10.1103/physrevlett.133.123802.Peer-Reviewed Original ResearchFermi arcsPhotonic spin-orbit couplingNon-Hermitian opticsSpin-orbit couplingTopological photonicsPolarization-dependent lossOrganic microcavityPolarization controlSingle crystalsOrganic microlasersMicrocavityControl of micro-Organic single crystalsSimultaneous generationCouplingEigenstatesFermiPhotonsNanolasersMicrolasersNanophotonicsOpticsPolarizationArcCrystalTailoring chaotic motion of microcavity photons in ray and wave dynamics by tuning the curvature of space
Lin W, Ding Y, Wang Y, Li P, Zhang Y, Yun F, Li F. Tailoring chaotic motion of microcavity photons in ray and wave dynamics by tuning the curvature of space. Science China Physics, Mechanics & Astronomy 2024, 67: 274214. DOI: 10.1007/s11433-024-2380-6.Peer-Reviewed Original ResearchSpace curvatureCurved spaceCurved space-timeCurvature of spaceCavity photonsMicrocavity photonsPhoton dynamicsOrbital motionRay dynamicsQuantum mechanicsSpace-timePhase diagramWave naturePeriodic orbitsChaotic trajectoriesChaotic motionChaotic modesPhotonsWave dynamicsOptical simulationFast diffusionHusimiWaveWavepacketMicrocavityMulti-Dimensional Fusion of Spectral and Polarimetric Images Followed by Pseudo-Color Algorithm Integration and Mapping in HSI Space
Guo F, Zhu J, Huang L, Li F, Zhang N, Deng J, Li H, Zhang X, Zhao Y, Jiang H, Hou X. Multi-Dimensional Fusion of Spectral and Polarimetric Images Followed by Pseudo-Color Algorithm Integration and Mapping in HSI Space. Remote Sensing 2024, 16: 1119. DOI: 10.3390/rs16071119.Peer-Reviewed Original ResearchConsistent with human visionHuman visual perceptionMulti-dimensional dataMulti-dimensional featuresSensing detectionRemote sensing detectionFused imageFusion algorithmEdge featuresHSI spaceObject detailsHuman visionObject surfaceAlgorithm integrationInformation entropyTarget recognitionAverage gradientPrincipal component analysisProcess dataAlgorithmDatasetExperimental resultsFourier transform imaging spectropolarimeterVisual displayVisual perceptionSingle-Mode Control and Individual Nanoparticle Detection in the Ultraviolet Region Based on Boron Nitride Microdisk with Whispering Gallery Mode
Li J, Li Q, Chen R, Zhang Q, Fang W, Liu K, Li F, Yun F. Single-Mode Control and Individual Nanoparticle Detection in the Ultraviolet Region Based on Boron Nitride Microdisk with Whispering Gallery Mode. Nanomaterials 2024, 14: 501. PMID: 38535649, PMCID: PMC10975174, DOI: 10.3390/nano14060501.Peer-Reviewed Original ResearchWhispering gallery modesMicrodisk cavitiesOptical microcavitiesGallery modesBoron nitrideResonant modesUltraviolet regionLight-matter interactionSingle-mode outputNonlinear opticsSingle-modeUltraviolet bandMicrodiskUltraviolet spectraSingle-mode controlMicrocavitiesPrecision sensitivityResonanceNanoparticle detectionBoronMicroresonatorsModeAbsorption propertiesTime-domain (FDTD) methodFinite-difference time-domain (FDTD) methodTunable chiral spin–spin interactions in a spin-mechanical hybrid system: application to causal-effect simulation
Li B, Li X, Zhao X, Zhang Y, Wang H, Li F. Tunable chiral spin–spin interactions in a spin-mechanical hybrid system: application to causal-effect simulation. New Journal Of Physics 2024, 26: 023029. DOI: 10.1088/1367-2630/ad24a1.Peer-Reviewed Original ResearchSpin-spin interactionsSu-Schrieffer-Heeger modelCoupled quantum systemsHybrid quantum devicesQuantum information processingSpin–spin coupling interactionsSpin-spin couplingChiral symmetrySpin qubitsQuantum systemsQuantum simulationSpin-phononQuantum devicesMechanical latticeChiral interactionsCorrelation functionManipulating voltageCoupling interactionInformation processingOn-chipQubitsHamiltonianSpinSublatticeSymmetry
2023
Combining three sources of optical anisotropy in a tunable open-access microcavity: From theory to experiment
Li Y, Luo X, Guo Y, Ren J, Long T, Wang B, Cai Y, Guo C, Qin Y, Fu H, Zhang Y, Yun F, Liao Q, Li F. Combining three sources of optical anisotropy in a tunable open-access microcavity: From theory to experiment. Journal Of Applied Physics 2023, 134: 223106. DOI: 10.1063/5.0173709.Peer-Reviewed Original ResearchOpen‐access microcavityPhotonic spin-orbit couplingTE-TM splittingSpin-orbit couplingFine energy splittingOptical property measurementsEmergent anisotropyMicrocavity photonsImportant physical mechanismsDegenerate perturbation theoryPhotonic devicesExciton-polaritonsPhotonic potentialPolarization controlSO couplingOptical anisotropySpin vorticesActive mediumEnergy splittingClear observationPhysical mechanismsPerturbation theoryMicrocavitiesIsotropic situationEigenstatesSimultaneous creation of multiple vortex-antivortex pairs in momentum space in photonic lattices
Li F, Koniakhin S, Nalitov A, Cherotchenko E, Solnyshkov D, Malpuech G, Xiao M, Zhang Y, Zhang Z. Simultaneous creation of multiple vortex-antivortex pairs in momentum space in photonic lattices. Advanced Photonics 2023, 5: 066007-066007. DOI: 10.1117/1.ap.5.6.066007.Peer-Reviewed Original ResearchPhotonic latticesOrbital angular momentumMomentum spaceSingle focused Gaussian beamHexagonal photonic latticesFocused Gaussian beamVortex-antivortex pairsRich physicsOAM conversionDirac pointWave packetsGaussian beamUnstructured lightAngular momentumVortex arrayHoneycomb latticeExperimental creationSimultaneous creationPhysicsLatticeTopological propertiesSymmetryPotential applicationsVorticesLight
2016
Stability, folding dynamics, and long-range conformational transition of the synaptic t-SNARE complex
Zhang X, Rebane AA, Ma L, Li F, Jiao J, Qu H, Pincet F, Rothman JE, Zhang Y. Stability, folding dynamics, and long-range conformational transition of the synaptic t-SNARE complex. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: e8031-e8040. PMID: 27911771, PMCID: PMC5167175, DOI: 10.1073/pnas.1605748113.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsMembrane FusionMiceMicroscopy, Atomic ForceMolecular Dynamics SimulationMunc18 ProteinsOptical TweezersProtein ConformationProtein DomainsProtein FoldingProtein StabilityQa-SNARE ProteinsSNARE ProteinsSynaptic TransmissionSynaptosomal-Associated Protein 25Vesicle-Associated Membrane Protein 2ConceptsSynaptic soluble N-ethylmaleimide-sensitive factor attachment protein receptorT-SNARE complexC-terminal domainN-terminal domainSNARE zipperingPlasma membraneN-ethylmaleimide-sensitive factor attachment protein receptorsSoluble N-ethylmaleimide-sensitive factor attachment protein receptorsFactor attachment protein receptorsTarget plasma membraneAttachment protein receptorsFour-helix bundleThree-helix bundleSynaptic vesicle fusionSingle-molecule force spectroscopyV-SNARESNARE assemblySNARE complexHelical bundleConformational switchC-terminusMembrane fusionVesicle fusionProtein receptorsZipperingKinetic barriers to SNAREpin assembly in the regulation of membrane docking/priming and fusion
Li F, Tiwari N, Rothman JE, Pincet F. Kinetic barriers to SNAREpin assembly in the regulation of membrane docking/priming and fusion. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 10536-10541. PMID: 27601655, PMCID: PMC5035884, DOI: 10.1073/pnas.1604000113.Peer-Reviewed Original ResearchSnapshot of sequential SNARE assembling states between membranes shows that N-terminal transient assembly initializes fusion
Wang YJ, Li F, Rodriguez N, Lafosse X, Gourier C, Perez E, Pincet F. Snapshot of sequential SNARE assembling states between membranes shows that N-terminal transient assembly initializes fusion. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 3533-3538. PMID: 26979957, PMCID: PMC4822643, DOI: 10.1073/pnas.1518935113.Peer-Reviewed Original ResearchConceptsFörster resonance energy transferProminent biological processesIntermembrane spaceSNARE proteinsTransmembrane complexTerminal domainInvolved proteinsBiological processesTransient assemblyResonance energy transferProteinSnareIntermembrane distanceMembraneAssemblyMolecular assembliesPathwayComplexes
2015
Phosphorylation of Complexin by PKA Regulates Activity-Dependent Spontaneous Neurotransmitter Release and Structural Synaptic Plasticity
Cho RW, Buhl LK, Volfson D, Tran A, Li F, Akbergenova Y, Littleton JT. Phosphorylation of Complexin by PKA Regulates Activity-Dependent Spontaneous Neurotransmitter Release and Structural Synaptic Plasticity. Neuron 2015, 88: 749-761. PMID: 26590346, PMCID: PMC4847943, DOI: 10.1016/j.neuron.2015.10.011.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Vesicular TransportAnimalsBase SequenceCalciumCyclic AMP-Dependent Protein KinasesDrosophilaDrosophila ProteinsExocytosisMolecular Sequence DataNerve Tissue ProteinsNeuromuscular JunctionNeuronal PlasticityNeurotransmitter AgentsPhosphorylationSNARE ProteinsSynaptic TransmissionConceptsSpontaneous neurotransmitter releaseActivity-dependent synaptic growthNeurotransmitter releasePKA-dependent phosphorylationActivity-dependent phosphorylationSynaptic plasticityPresynaptic release machinerySNARE complexRegulated traffickingActivity-dependent mannerC-terminusSynaptic growthSpontaneous releaseStructural synaptic plasticityPhosphorylationStructural plasticityRelease machineryPostsynaptic glutamate receptorsPlasticityNeuronal plasticityGlutamate receptorsSynaptic transmissionNervous systemKey roleFusion mechanismFormation of Giant Unilamellar Proteo-Liposomes by Osmotic Shock
Motta I, Gohlke A, Adrien V, Li F, Gardavot H, Rothman JE, Pincet F. Formation of Giant Unilamellar Proteo-Liposomes by Osmotic Shock. Langmuir 2015, 31: 7091-7099. PMID: 26038815, PMCID: PMC4950989, DOI: 10.1021/acs.langmuir.5b01173.Peer-Reviewed Original ResearchConceptsGiant unilamellar vesiclesLipid-anchored proteinsOsmotic shockTrans-membrane proteinsSingle giant unilamellar vesiclesProtein substratesPeripheral proteinsSpecific lipidsDifferent proteinsPhotobleaching experimentsFluorescence recoveryCell membraneProteinLarge vesiclesPhysiological conditionsModel systemUnilamellar vesiclesPhospholipid bilayersVesiclesSimple generic methodPrevious dataMembraneHigh concentrationsLipidsBilayersRe-visiting the trans insertion model for complexin clamping
Krishnakumar SS, Li F, Coleman J, Schauder CM, Kümmel D, Pincet F, Rothman JE, Reinisch KM. Re-visiting the trans insertion model for complexin clamping. ELife 2015, 4: e04463. PMID: 25831964, PMCID: PMC4384536, DOI: 10.7554/elife.04463.Peer-Reviewed Original ResearchAdaptor Proteins, Vesicular TransportAlgorithmsAnimalsCalorimetryCircular DichroismEntropyFluorescence Resonance Energy TransferHumansKineticsMembrane FusionModels, NeurologicalMutationNerve Tissue ProteinsNeuronsProtein BindingSignal TransductionSNARE ProteinsSynaptic TransmissionSynaptotagminsVesicle-Associated Membrane Protein 2
2014
Genetic analysis of the Complexin trans-clamping model for cross-linking SNARE complexes in vivo
Cho RW, Kümmel D, Li F, Baguley SW, Coleman J, Rothman JE, Littleton JT. Genetic analysis of the Complexin trans-clamping model for cross-linking SNARE complexes in vivo. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 10317-10322. PMID: 24982161, PMCID: PMC4104896, DOI: 10.1073/pnas.1409311111.Peer-Reviewed Original ResearchConceptsSNARE complexSpontaneous synaptic vesicle fusionSingle SNARE complexSNARE fusion machinerySynaptic vesicle fusionGenetic rescue approachStructure-function studiesDistinct molecular mechanismsVivo genetic manipulationCpx proteinsFusion clampTrans-SNAREFusion machineryTrans interactionsConformational switchGenetic manipulationGenetic analysisVesicle fusionMolecular mechanismsVesicle releaseRescue approachMutantsProteinSnareAdditional mechanismA Half-Zippered SNARE Complex Represents a Functional Intermediate in Membrane Fusion
Li F, Kümmel D, Coleman J, Reinisch KM, Rothman JE, Pincet F. A Half-Zippered SNARE Complex Represents a Functional Intermediate in Membrane Fusion. Journal Of The American Chemical Society 2014, 136: 3456-3464. PMID: 24533674, PMCID: PMC3985920, DOI: 10.1021/ja410690m.Peer-Reviewed Original ResearchConceptsN-terminal domainMembrane fusionV-SNARET-SNAREsRecent biophysical studiesC-terminal portionSNARE complexTransmembrane domainRegulatory proteinsFunctional intermediatesC-terminusDistinct functionsN-terminusMolecular mechanismsConformational rearrangementsBiophysical studiesVital regulatorZippering mechanismRate-limiting stepBiological membranesSnareFusionComplexinMultiple stagesZippering
2011
Complexin activates and clamps SNAREpins by a common mechanism involving an intermediate energetic state
Li F, Pincet F, Perez E, Giraudo CG, Tareste D, Rothman JE. Complexin activates and clamps SNAREpins by a common mechanism involving an intermediate energetic state. Nature Structural & Molecular Biology 2011, 18: 941-946. PMID: 21785413, PMCID: PMC3736826, DOI: 10.1038/nsmb.2102.Peer-Reviewed Original ResearchA conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion
Krishnakumar SS, Radoff DT, Kümmel D, Giraudo CG, Li F, Khandan L, Baguley SW, Coleman J, Reinisch KM, Pincet F, Rothman JE. A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion. Nature Structural & Molecular Biology 2011, 18: 934-940. PMID: 21785412, PMCID: PMC3668341, DOI: 10.1038/nsmb.2103.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Vesicular TransportAmino Acid SequenceAnimalsBinding SitesCrystallography, X-RayHumansMembrane FusionModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedNerve Tissue ProteinsProtein Structure, TertiaryRatsSynaptosomal-Associated Protein 25SynaptotagminsSyntaxin 1Vesicle-Associated Membrane Protein 2Complexin cross-links prefusion SNAREs into a zigzag array
Kümmel D, Krishnakumar SS, Radoff DT, Li F, Giraudo CG, Pincet F, Rothman JE, Reinisch KM. Complexin cross-links prefusion SNAREs into a zigzag array. Nature Structural & Molecular Biology 2011, 18: 927-933. PMID: 21785414, PMCID: PMC3410656, DOI: 10.1038/nsmb.2101.Peer-Reviewed Original Research
2008
The Surface Force Apparatus to Reveal the Energetics of Biomolecules Assembly. Application to DNA Bases Pairing and SNARE Fusion Proteins Folding
Eric Perez, Feng Li, David Tareste, and Frédéric Pincet, Cellular and Molecular Bioengineering, 2008, 1, (4), 240-246.Peer-Reviewed Original Research
2007
Confinement Free Energy of Surfaces Bearing End-Grafted Polymers in the Mushroom Regime and Local Measurement of the Polymer Density
Li F, Pincet F. Confinement Free Energy of Surfaces Bearing End-Grafted Polymers in the Mushroom Regime and Local Measurement of the Polymer Density. Langmuir 2007, 23: 12541-12548. PMID: 17988162, DOI: 10.1021/la7021374.Peer-Reviewed Original ResearchConceptsPolymer chainsMushroom regimeFree energyEnd-Grafted PolymersSurface force measurementsSingle polymer chainSurface force apparatusEnd-tethered polymer chainsInteraction free energyGrafted polymersForce apparatusPolymer densityForce profilesPolymersConfinement free energyPolymer theoryLipid bilayersIdentical surfacesMushroomlike structuresFree energy approximationForce measurementsSurfacePlanar surfaceGood precisionChain