2023
Synaptophysin chaperones the assembly of 12 SNAREpins under each ready-release vesicle
Bera M, Radhakrishnan A, Coleman J, Sundaram R, Ramakrishnan S, Pincet F, Rothman J. Synaptophysin chaperones the assembly of 12 SNAREpins under each ready-release vesicle. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2311484120. PMID: 37903271, PMCID: PMC10636311, DOI: 10.1073/pnas.2311484120.Peer-Reviewed Original ResearchConceptsSpecific molecular functionsSynaptic vesicle protein synaptophysinTarget membrane bilayerSensor synaptotagminSNARE proteinsMolecular functionsMembrane proteinsSNAREpinsReceptor vesiclesSingle-molecule measurementsGene knockoutMembrane bilayerLipid bilayersProtein synaptophysinVesiclesDetergent extractsHexamer structureSYPMechanism of actionProteinAssemblyChaperonesSynaptotagminExocytosisBilayersDirect determination of oligomeric organization of integral membrane proteins and lipids from intact customizable bilayer
Panda A, Giska F, Duncan A, Welch A, Brown C, McAllister R, Hariharan P, Goder J, Coleman J, Ramakrishnan S, Pincet F, Guan L, Krishnakumar S, Rothman J, Gupta K. Direct determination of oligomeric organization of integral membrane proteins and lipids from intact customizable bilayer. Nature Methods 2023, 20: 891-897. PMID: 37106230, PMCID: PMC10932606, DOI: 10.1038/s41592-023-01864-5.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsMembrane proteinsOligomeric organizationOligomeric stateNative mass spectrometry analysisFunctional oligomeric stateKey membrane componentMass spectrometry analysisNMS analysisTarget membraneLipid bindingMembrane componentsProteolipid vesiclesMembrane compositionLipid compositionSpectrometry analysisLipid membranesNeurotransmitter releaseProteinMembraneLipidsMembrane propertiesDirect determinationBilayersTransporters
2022
A tunable lipid bilayer native MS platform for direct determination of hierarchical organization of membrane proteins and lipids at the membrane
Panda A, Giska F, Brown C, Coleman J, Rothman J, Gupta K. A tunable lipid bilayer native MS platform for direct determination of hierarchical organization of membrane proteins and lipids at the membrane. Biophysical Journal 2022, 121: 312a-313a. DOI: 10.1016/j.bpj.2021.11.1192.Peer-Reviewed Original Research
2021
Vesicle capture by membrane‐bound Munc13‐1 requires self‐assembly into discrete clusters
Li F, Sundaram R, Gatta AT, Coleman J, Ramakrishnan S, Krishnakumar SS, Pincet F, Rothman JE. Vesicle capture by membrane‐bound Munc13‐1 requires self‐assembly into discrete clusters. FEBS Letters 2021, 595: 2185-2196. PMID: 34227103, DOI: 10.1002/1873-3468.14157.Peer-Reviewed Original ResearchConceptsMunc13-1Vesicle captureSpecific plasma membrane domainsStep-wise photobleachingC-domainMunc13-1 proteinPlasma membrane domainsSynaptic vesicle dockingC-terminal CVesicle dockingMembrane domainsTIRF microscopySoluble proteinVesicle membraneActive zoneMultiple copiesSynaptic vesiclesFunctional significanceSmall unilamellar vesiclesLipid bilayersVesiclesUnilamellar vesiclesProteinDiscrete clustersCopies
2020
Synergistic roles of Synaptotagmin-1 and complexin in calcium-regulated neuronal exocytosis
Ramakrishnan S, Bera M, Coleman J, Rothman JE, Krishnakumar SS. Synergistic roles of Synaptotagmin-1 and complexin in calcium-regulated neuronal exocytosis. ELife 2020, 9: e54506. PMID: 32401194, PMCID: PMC7220375, DOI: 10.7554/elife.54506.Peer-Reviewed Original ResearchConceptsSynaptotagmin-1Vesicular fusion machinerySingle-vesicle fusionFusion of vesiclesSNARE complexFusion machineryNeuronal exocytosisOligomer bindsRegulatory proteinsVesicle fusionSNAREpinsSynchronous fusionSynaptic vesiclesNovel mechanismVesiclesComplexinKinetic delayPrimary interfaceSynergistic roleFusionExocytosisMachineryProteinBindsMechanism
2019
Highly Reproducible Physiological Asymmetric Membrane with Freely Diffusing Embedded Proteins in a 3D‐Printed Microfluidic Setup
Heo P, Ramakrishnan S, Coleman J, Rothman JE, Fleury J, Pincet F. Highly Reproducible Physiological Asymmetric Membrane with Freely Diffusing Embedded Proteins in a 3D‐Printed Microfluidic Setup. Small 2019, 15: e1900725. PMID: 30977975, DOI: 10.1002/smll.201900725.Peer-Reviewed Original ResearchConceptsMost biological processesLipid leafletAreas of biologyEmbedded proteinsBiological processesRelevant lipidsProteinAsymmetric bilayersPhysiological conditionsModel membranesPlanar bilayersBilayer formation processInvaluable insightsBilayersConfocal microscopeMembraneLipidsTransmembraneBiologyLeafletsMicrofluidic setupRecapitulation
2018
High-Throughput Monitoring of Single Vesicle Fusion Using Freestanding Membranes and Automated Analysis
Ramakrishnan S, Gohlke A, Li F, Coleman J, Xu W, Rothman JE, Pincet F. High-Throughput Monitoring of Single Vesicle Fusion Using Freestanding Membranes and Automated Analysis. Langmuir 2018, 34: 5849-5859. PMID: 29694054, DOI: 10.1021/acs.langmuir.8b00116.Peer-Reviewed Original ResearchConceptsMembrane fusionFusion eventsSoluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteinsSNARE-dependent membrane fusionIndividual vesicle fusion eventsFactor attachment protein receptor proteinsN-ethylmaleimide-sensitive factor attachment protein receptor proteinsT-SNARE proteinsSingle-vesicle fusionProtein receptor proteinsVesicle fusion eventsMobility of proteinsVesicle dockingContent releaseVesicle fusionHigh-throughput monitoringPlanar membranesReceptor proteinLipid mixingProteinLipid bilayersVesiclesCorrect reconstitutionMembraneAqueous compartment
2016
Ring-like oligomers of Synaptotagmins and related C2 domain proteins
Zanetti MN, Bello OD, Wang J, Coleman J, Cai Y, Sindelar CV, Rothman JE, Krishnakumar SS. Ring-like oligomers of Synaptotagmins and related C2 domain proteins. ELife 2016, 5: e17262. PMID: 27434670, PMCID: PMC4977156, DOI: 10.7554/elife.17262.Peer-Reviewed Original Research
2014
Genetic analysis of the Complexin trans-clamping model for cross-linking SNARE complexes in vivo
Cho RW, Kümmel D, Li F, Baguley SW, Coleman J, Rothman JE, Littleton JT. Genetic analysis of the Complexin trans-clamping model for cross-linking SNARE complexes in vivo. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 10317-10322. PMID: 24982161, PMCID: PMC4104896, DOI: 10.1073/pnas.1409311111.Peer-Reviewed Original ResearchConceptsSNARE complexSpontaneous synaptic vesicle fusionSingle SNARE complexSNARE fusion machinerySynaptic vesicle fusionGenetic rescue approachStructure-function studiesDistinct molecular mechanismsVivo genetic manipulationCpx proteinsFusion clampTrans-SNAREFusion machineryTrans interactionsConformational switchGenetic manipulationGenetic analysisVesicle fusionMolecular mechanismsVesicle releaseRescue approachMutantsProteinSnareAdditional mechanism
2010
Protein Determinants of SNARE-Mediated Lipid Mixing
Ji H, Coleman J, Yang R, Melia TJ, Rothman JE, Tareste D. Protein Determinants of SNARE-Mediated Lipid Mixing. Biophysical Journal 2010, 99: 553-560. PMID: 20643074, PMCID: PMC2905075, DOI: 10.1016/j.bpj.2010.04.060.Peer-Reviewed Original ResearchConceptsSNARE proteinsN-ethylmaleimide-sensitive factor attachment protein receptorsSoluble N-ethylmaleimide-sensitive factor attachment protein receptorsSensitive factor attachment protein receptorsFactor attachment protein receptorsT-SNARE complexMembrane SNARE proteinsT-SNARE proteinsAttachment protein receptorsLipid mixingMembrane SNAREsProtein receptorsProtein determinantsReconstitution conditionsReconstitution protocolsSnareLiposome fusionProteinLiposome populationsSpecific activityLipidsOptimal lipidProteoliposomesPhysiologyRecent workA fast, single-vesicle fusion assay mimics physiological SNARE requirements
Karatekin E, Di Giovanni J, Iborra C, Coleman J, O'Shaughnessy B, Seagar M, Rothman JE. A fast, single-vesicle fusion assay mimics physiological SNARE requirements. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 3517-3521. PMID: 20133592, PMCID: PMC2840481, DOI: 10.1073/pnas.0914723107.Peer-Reviewed Original Research
2006
Rtn1p Is Involved in Structuring the Cortical Endoplasmic Reticulum
De Craene J, Coleman J, Estrada de Martin P, Pypaert M, Anderson S, Yates J, Ferro-Novick S, Novick P. Rtn1p Is Involved in Structuring the Cortical Endoplasmic Reticulum. Molecular Biology Of The Cell 2006, 17: 3009-3020. PMID: 16624861, PMCID: PMC1483037, DOI: 10.1091/mbc.e06-01-0080.Peer-Reviewed Original ResearchConceptsCortical endoplasmic reticulumEndoplasmic reticulumNuclear envelopeCortical ER networkReticular endoplasmic reticulumMembrane-spanning domainsExocyst functionYeast mutantsProtein associatesBud tipProteomic screenYeast budER morphologyCell cortexHydrophilic loopSystematic screenSecretory vesiclesRtn1pER structureER networkExocystProteinModest accumulationReticulumOverexpressionThe polarity-establishment component Bem1p interacts with the exocyst complex through the Sec15p subunit
France Y, Boyd C, Coleman J, Novick P. The polarity-establishment component Bem1p interacts with the exocyst complex through the Sec15p subunit. Journal Of Cell Science 2006, 119: 876-888. PMID: 16478783, DOI: 10.1242/jcs.02849.Peer-Reviewed Original ResearchConceptsBud growthSrc homology 3 domainTwo-hybrid studiesFirst Src homology 3 domainDirect physical interactionGreen fluorescent proteinExocyst complexGolgi traffickingSec15pSecretory pathwaySpatial regulationBem1pSecretory machineryMaster regulatorFluorescent proteinNew budsMachineryExocystSec4pPhysical interactionSubunitsCase of cellsProteinPathwayCrucial role