2024
Retinal Pigmented Epithelium and the Outer Blood-Retinal Barrier
Rizzolo L. Retinal Pigmented Epithelium and the Outer Blood-Retinal Barrier. 2024 DOI: 10.1016/b978-0-443-13820-1.00020-7.Peer-Reviewed Original ResearchRetinal pigment epitheliumOuter blood-retinal barrierBlood-retinal barrierNeurosensory retinaClaudin-19Pigment epitheliumTight junctionsRetinal pigment epithelium functionHuman retinal pigment epitheliumBarrier functionRetinal barrierCo-culture systemClaudin familyParacellular spaceFamily of transmembrane proteinsEpitheliumChoriocapillarisCo-cultureCapillary bedClaudinRetinaBidirectional interactionsGene expressionPhysiological functionsTransmembrane proteins
2020
RPE Polarity and Barrier Function
Rizzolo L. RPE Polarity and Barrier Function. 2020, 19-45. DOI: 10.1007/978-3-030-28384-1_2.ChaptersCell polarityEpithelial cell polarityPlasma membrane domainsTight junctionsBasolateral plasma membraneRPE polarityCellular processesMembrane domainsPlasma membraneMembrane transportersMembrane transportNeighboring cellsRPE phenotypeSemi-selective barrierProteinBarrier functionJunction proteinsRPE functionParacellular spaceOuter blood-retinal barrierVisual cycleTight junction proteinsTransepithelial electrical resistanceAsymmetric distributionDynamic interplay
2017
Effects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium
Xia T, Rizzolo LJ. Effects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium. Vision Research 2017, 139: 72-81. PMID: 28347688, DOI: 10.1016/j.visres.2017.02.006.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsBlood-retinal barrierRetinal pigment epitheliumOuter blood-retinal barrierRPE barrier functionDiabetic retinopathyBarrier functionPigment epitheliumInner blood-retinal barrierEffect of diabetesRetinal endothelial cellsMicrovascular complicationsDiabetes mellitusNeurosensory retinaRetinal healthParacellular spaceRetinopathyMetabolic processingEndothelial cellsEarly effectsDiabetesActive transportTight junctionsCulture modelEpitheliumTransepithelial movementVascular Biology: RPE Barrier☆
Rizzolo L, Ghiassi-Nejad M, Tainsh L. Vascular Biology: RPE Barrier☆. 2017 DOI: 10.1016/b978-0-12-809324-5.01510-8.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2015
TRP Channels Localize to Subdomains of the Apical Plasma Membrane in Human Fetal Retinal Pigment EpitheliumTRP Channels of Human Fetal RPE
Zhao PY, Gan G, Peng S, Wang SB, Chen B, Adelman RA, Rizzolo LJ. TRP Channels Localize to Subdomains of the Apical Plasma Membrane in Human Fetal Retinal Pigment EpitheliumTRP Channels of Human Fetal RPE. Investigative Ophthalmology & Visual Science 2015, 56: 1916-1923. PMID: 25736794, PMCID: PMC4364639, DOI: 10.1167/iovs.14-15738.Peer-Reviewed Original ResearchConceptsHuman fetal RPETRP channelsApical membraneFetal RPEApical plasma membraneCell-cell contactTransepithelial electrical resistanceTransient receptor potential channelsTight junctionsSubcellular localizationInhibitor of calpainPrimary ciliaRT-PCRPlasma membraneBasal channel activityQuantitative RT-PCRApical tight junctionsExpression of TRPC4Ion channelsBasolateral surfaceApical microvilliApical surfaceChannel activityConfocal microscopyTRPM3
2013
Engineering a Blood-Retinal Barrier With Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium: Transcriptome and Functional Analysis
Peng S, Gan G, Qiu C, Zhong M, An H, Adelman RA, Rizzolo LJ. Engineering a Blood-Retinal Barrier With Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium: Transcriptome and Functional Analysis. Stem Cells Translational Medicine 2013, 2: 534-544. PMID: 23734062, PMCID: PMC3697821, DOI: 10.5966/sctm.2012-0134.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumBlood-retinal barrierHuman retinal pigment epitheliumPigment epitheliumHuman fetal retinal pigment epitheliumOuter blood-retinal barrierTight junctionsFetal retinal pigment epitheliumEmbryonic stem cell-derived retinal pigment epitheliumAdult retinal pigment epitheliumQuantitative reverse transcription polymerase chain reactionMaturation of hESCReverse transcription-polymerase chain reactionTranscription-polymerase chain reactionHuman embryonic stem cell-derived retinal pigment epitheliumStem cell-derived retinal pigment epitheliumRPE replacement therapyPanel of genesReplacement therapyAnimal modelsHuman embryonic stem cellsRetinal degenerationRPE functionSerum-free mediumHuman retina
2012
Effects of Proinflammatory Cytokines on the Claudin-19 Rich Tight Junctions of Human Retinal Pigment EpitheliumCytokine Effects on RPE Tight Junctions
Peng S, Gan G, Rao VS, Adelman RA, Rizzolo LJ. Effects of Proinflammatory Cytokines on the Claudin-19 Rich Tight Junctions of Human Retinal Pigment EpitheliumCytokine Effects on RPE Tight Junctions. Investigative Ophthalmology & Visual Science 2012, 53: 5016-5028. PMID: 22761260, PMCID: PMC3410691, DOI: 10.1167/iovs.11-8311.Peer-Reviewed Original ResearchConceptsHuman fetal RPEEffects of TNFαTransepithelial electrical resistanceProinflammatory cytokinesClaudin-19Tight junctionsAge-related macular degenerationZO-1Effects of cytokinesApical sideSubclinical inflammationTumor necrosisMacular degenerationTNFα receptorsOcular diseasesTNFαSerum-free mediumClaudin-3RPE tight junctionsFetal RPECytokinesClaudin-2Confocal immunofluorescence microscopyInhibitor of apoptosis
2011
Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium
Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Progress In Retinal And Eye Research 2011, 30: 296-323. PMID: 21704180, DOI: 10.1016/j.preteyeres.2011.06.002.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumOuter retinaPigment epitheliumTight junctionsBarrier functionOuter blood-retinal barrierBlood-retinal barrierHuman retinal pigment epitheliumBlood-tissue barriersTight junctional proteinsPhotoreceptor layerNeural retinaMetabolic alterationsRetinaEpitheliumClaudin compositionTransepithelial diffusionStem cellsJunctional proteinsClaudinsClaudin-19 and the Barrier Properties of the Human Retinal Pigment Epithelium
Peng S, Rao VS, Adelman RA, Rizzolo LJ. Claudin-19 and the Barrier Properties of the Human Retinal Pigment Epithelium. Investigative Ophthalmology & Visual Science 2011, 52: 1392-1403. PMID: 21071746, PMCID: PMC3101667, DOI: 10.1167/iovs.10-5984.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsCells, CulturedClaudinsElectric ImpedanceFluorescent Antibody Technique, IndirectGene SilencingGestational AgeHumansImmunoblottingMembrane ProteinsOccludinPermeabilityPolyethylene GlycolsRetinal Pigment EpitheliumReverse Transcriptase Polymerase Chain ReactionRNA, MessengerRNA, Small InterferingTight JunctionsConceptsRetinal pigment epitheliumTransepithelial electrical resistanceHuman retinal pigment epitheliumHuman fetal RPECultured human fetal retinal pigment epitheliumPigment epitheliumClaudin-19Retinal sideHuman fetal retinal pigment epitheliumSpread of edemaFetal retinal pigment epitheliumFetal human retinal pigment epitheliumEffect of serumTight junctionsRPE permeabilityQuantitative RT-PCRChoroidal capillariesSubpopulation of cellsClaudin-1RPE barrierClaudin-3RPE tight junctionsRT-PCREpitheliumSerum
2010
Retinal Pigmented Epithelium Barrier
Rizzolo L. Retinal Pigmented Epithelium Barrier. 2010, 101-108. DOI: 10.1016/b978-0-12-374203-2.00132-9.Chapters
2008
Glucose Transporters in Retinal Pigment Epithelium Development
Rizzolo L. Glucose Transporters in Retinal Pigment Epithelium Development. Ophthalmology Research 2008, 185-199. DOI: 10.1007/978-1-59745-375-2_10.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsRetinal pigment epitheliumNeural retinaOuter blood-retinal barrierRetinal pigment epithelium developmentBlood-retinal barrierBlood-brain barrierFormation of fenestraeGlucose transporterTight junctionsExpression of GLUT1Systemic endotheliumChoroidal capillariesPigment epitheliumGLUT family membersBasal levelsRetinaEpithelium developmentTranscellular transportTransepithelial transportChoriocapillarisEndothelium
2007
Development and Role of Tight Junctions in the Retinal Pigment Epithelium
Rizzolo LJ. Development and Role of Tight Junctions in the Retinal Pigment Epithelium. International Review Of Cytology 2007, 258: 195-234. PMID: 17338922, DOI: 10.1016/s0074-7696(07)58004-6.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumPigment epitheliumNeural retinaTight junctionsOuter blood-retinal barrierBlood-retinal barrierSlower time courseEpitheliumCell proliferationTissue-specific propertiesTransepithelial diffusionTime courseRetinaParacellular diffusionPhysiological roleEpithelial monolayersSolid tissuesParacellular spaceApical surfaceCulture system
2006
Expression of JAM-A, AF-6, PAR-3 and PAR-6 during the assembly and remodeling of RPE tight junctions
Luo Y, Fukuhara M, Weitzman M, Rizzolo LJ. Expression of JAM-A, AF-6, PAR-3 and PAR-6 during the assembly and remodeling of RPE tight junctions. Brain Research 2006, 1110: 55-63. PMID: 16859655, DOI: 10.1016/j.brainres.2006.06.059.Peer-Reviewed Original Research
2002
Claudin 5 Is Transiently Expressed During the Development of the Retinal Pigment Epithelium
Kojima S, Rahner C, Peng S, Rizzolo L. Claudin 5 Is Transiently Expressed During the Development of the Retinal Pigment Epithelium. The Journal Of Membrane Biology 2002, 186: 81-88. PMID: 11944085, DOI: 10.1007/s00232-001-0137-7.Peer-Reviewed Original ResearchConceptsReverse transcriptase-polymerase chain reactionRetinal pigment epitheliumClaudin-5Chick retinal pigment epitheliumPigment epitheliumTranscriptase-polymerase chain reactionEmbryonic day 14Tight junctionsSemiquantitative RT-PCRExpression of claudinsEmbryonic day 10Northern blottingNeural retinaDay 14Semi-quantitative RT-PCRDay 10Claudin-3RPE developmentPeak levelsDay 7 embryosChoroid layerPrimary culturesChain reactionEpitheliumBlotting
2000
Differential regulation of tight junction permeability during development of the retinal pigment epithelium
Ban Y, Rizzolo L. Differential regulation of tight junction permeability during development of the retinal pigment epithelium. American Journal Of Physiology - Cell Physiology 2000, 279: c744-c750. PMID: 10942725, DOI: 10.1152/ajpcell.2000.279.3.c744.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumPigment epitheliumBlood-brain barrierEmbryonic ageTight junctionsTight junction permeabilityLow calcium mediumRPE developmentAcetylneuraminic acidMannitol permeabilityJunction permeabilityEpithelial regionsCulture modelDifferent subpopulationsParacellular diffusionEpitheliumDifferential regulationAgeOrder of permeationTwo secreted retinal factors regulate different stages of development of the outer blood–retinal barrier
Ban Y, Wilt S, Rizzolo L. Two secreted retinal factors regulate different stages of development of the outer blood–retinal barrier. Brain Research 2000, 119: 259-267. PMID: 10675776, DOI: 10.1016/s0165-3806(99)00183-2.Peer-Reviewed Original ResearchMeSH KeywordsAdrenergic AgonistsAnimalsBiological TransportBlood-Brain BarrierCatecholaminesCell FractionationCells, CulturedChick EmbryoChromatography, GelCulture Media, ConditionedDopamine AgonistsElectric ImpedanceEndopeptidasesEye ProteinsIndolesPigment Epithelium of EyeSerotonin Receptor AgonistsTight JunctionsConceptsRetinal pigment epitheliumBlood-retinal barrierTransepithelial electrical resistanceOuter blood-retinal barrierBlood-brain barrierEffects of astrocytesCultured retinal pigment epitheliumChick retinal pigment epitheliumPigment epitheliumNeural retinaRetinal factorsChick retinaRPE barrierRPE cellsRetinaEndothelial regionAstrocytesTight junctionsCulture modelDiffusible factorsDifferent stagesActive factorsJunction developmentMultistep processFactors
1998
Protein-Binding Domains of the Tight Junction Protein, ZO-2, Are Highly Conserved between Avian and Mammalian Species
Collins J, Rizzolo L. Protein-Binding Domains of the Tight Junction Protein, ZO-2, Are Highly Conserved between Avian and Mammalian Species. Biochemical And Biophysical Research Communications 1998, 252: 617-622. PMID: 9837755, DOI: 10.1006/bbrc.1998.9710.Peer-Reviewed Original ResearchConceptsProtein-binding domainsSrc homology 3ZO-2ZO-3Homologous domainsMAGUK protein familyDistinct PDZ domainsProtein binding domainsZO-1Apical junctional complexHomology 3PDZ domainProtein familySH3 domainAcidic domainEvolutionary pressureMammalian speciesJunctional complexesEmbryonic chicken retinaJunction proteinsTight junctionsDifferent functionsProteinTight junction proteinsSequence
1997
Polarity and the development of the outer blood-retinal barrier.
Rizzolo L. Polarity and the development of the outer blood-retinal barrier. Histology And Histopathology 1997, 12: 1057-67. PMID: 9302567.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
1990
The distribution of Na+,K+-ATPase in the retinal pigmented epithelium from chicken embryo is polarized in vivo but not in primary cell culture
Rizzolo L. The distribution of Na+,K+-ATPase in the retinal pigmented epithelium from chicken embryo is polarized in vivo but not in primary cell culture. Experimental Eye Research 1990, 51: 435-446. PMID: 2170160, DOI: 10.1016/0014-4835(90)90156-o.Peer-Reviewed Original ResearchConceptsBasolateral plasma membranePlasma membranePrimary cell culturesPlasma membrane proteinsFunctional tight junctionsCultured RPEChicken embryosMatrix-coated filtersExtracellular matrix coatingCell culturesMembrane proteinsVesicular stomatitis virusMorphological polarityApical poleCultured cellsApical membraneEngelbreth-HolmJunctional complexesSwarm tumorEmbryonic eyeStomatitis virusATPaseBasolateral membraneSerum-free mediumTight junctions