Skip to Main Content


Dr. Kaminski’s team main ambition is to uncover the mechanisms, and thus have a significant impact on the management of advanced lung diseases with a specific focus on IPF, a chronic progressive interstitial lung disease that is currently incurable.

To study these mechanisms Dr. Kaminski’s team applies systems biology approaches that incorporate a combination of traditional molecular biology methods, high-throughput genomic technologies such as transcript level profiling (microarrays and next generation sequencing) of coding and non-coding RNA, genome scale analyses of gene variants, advanced bioinformatics approaches and targeted proteomic approaches.

These studies have led to shifts in the perception of pulmonary fibrosis, the realization that aberrant activation of developmental pathways is at the core of lung fibrosis, the discovery of the role of microRNAs in IPF, the identification and validation of novel prognostic biomarkers in the bloodstream, as well many additional insights.

Basic Mechanisms

Understanding and identifying the genetic and molecular networks that determine the lung phenotype using high throughput genomic and proteomic technologies.

  • Role of microRNAs in Idiopathic Pulmonary Fibrosis and other chronic lung disease
  • Role of other non-coding RNAs (lincRNAs) in advanced lung disease
  • Epigenomic regulation of cellular phenotypes in chronic lung disease
  • The role of developmental pathways in lung injury and aberrant repair (scaring)
  • Role of the microbiome in defining lung phenotypes in chronic lung disease
  • The molecular basis of Cellular and Regional Heterogeneity in the IPF lung