2015
mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation
Pollizzi K, Patel C, Sun I, Oh M, Waickman A, Wen J, Delgoffe G, Powell J. mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation. Journal Of Clinical Investigation 2015, 125: 2090-2108. PMID: 25893604, PMCID: PMC4463194, DOI: 10.1172/jci77746.Peer-Reviewed Original ResearchMeSH KeywordsAdoptive TransferAnimalsCarrier ProteinsCD4-CD8 RatioCD8-Positive T-LymphocytesCell Line, TumorDeoxyglucoseFemaleGenes, ReporterGlycolysisImmunologic MemoryInterferon-gammaLymphocyte ActivationLymphopoiesisMaleMechanistic Target of Rapamycin Complex 1Mechanistic Target of Rapamycin Complex 2Melanoma, ExperimentalMiceMice, CongenicMice, Inbred C57BLMonomeric GTP-Binding ProteinsMultiprotein ComplexesNeuropeptidesOvalbuminPeptide FragmentsPhosphorylationProtein Processing, Post-TranslationalProto-Oncogene Proteins c-aktRapamycin-Insensitive Companion of mTOR ProteinRas Homolog Enriched in Brain ProteinRecombinant Fusion ProteinsSirolimusThymomaTOR Serine-Threonine KinasesTransduction, GeneticTumor Necrosis Factor-alphaConceptsGeneration of CD8T cell effectorsT cellsTuberous sclerosis complex 2Cell effectorsT cell effector responsesMemory-like T cellsEffector cell subsetsT cell memoryDifferentiation of CD4T cell-specific deletionT cell differentiationCell-specific deletionSurface marker expressionMTOR-dependent pathwayEvaluation of miceEffector CD8Antitumor immunityEffector phenotypeEffector cellsCell subsetsRecall responsesVaccine efficacyEffector responsesCD8
2013
SHP-1 Regulation of Mast Cell Function in Allergic Inflammation and Anaphylaxis
Zhou L, Oh SY, Zhou Y, Yuan B, Wu F, Oh MH, Wang Y, Takemoto C, Van Rooijen N, Zheng T, Zhu Z. SHP-1 Regulation of Mast Cell Function in Allergic Inflammation and Anaphylaxis. PLOS ONE 2013, 8: e55763. PMID: 23390550, PMCID: PMC3563592, DOI: 10.1371/journal.pone.0055763.Peer-Reviewed Original ResearchMeSH KeywordsAdoptive TransferAllergensAnaphylaxisAnimalsBasophilsCell DifferentiationCells, CulturedCytokinesGene ExpressionInflammationInjections, IntravenousLipopolysaccharidesLungMast CellsMiceMice, KnockoutOvalbuminProtein Tyrosine Phosphatase, Non-Receptor Type 6Respiratory HypersensitivitySignal TransductionTh2 CellsConceptsTh2 immune responseAllergic inflammationAirway inflammationMast cell functionImmune responseMast cellsDeficient bone marrow cellsMast cell-deficient miceCell-deficient miceCell functionSevere allergic reactionsWild-type miceSHP-1Bone marrow cellsAirway stimulationAdoptive transferSystemic anaphylaxisAnaphylactic responseClinical symptomsImmunological homeostasisDeficient miceAllergic reactionsType miceAnaphylaxisInflammation
2007
TH2 and TH1 lung inflammation induced by airway allergen sensitization with low and high doses of double-stranded RNA
Jeon SG, Oh SY, Park HK, Kim YS, Shim EJ, Lee HS, Oh MH, Bang B, Chun EY, Kim SH, Gho YS, Zhu Z, Kim YY, Kim YK. TH2 and TH1 lung inflammation induced by airway allergen sensitization with low and high doses of double-stranded RNA. Journal Of Allergy And Clinical Immunology 2007, 120: 803-812. PMID: 17610940, DOI: 10.1016/j.jaci.2007.05.030.Peer-Reviewed Original ResearchConceptsRespiratory viral infectionsAllergen sensitizationLung inflammationViral infectionAirway sensitizationIL-4Immune responseMouse modelHigh dosesIL-13-deficient miceIFN-gamma-deficient miceT-bet-deficient miceToll-like receptor 3Airway allergen exposureAllergic lung inflammationAdaptive immune responsesToll-like receptorsIL-4 expressionSTAT6-deficient miceNovel mouse modelIFN-gamma expressionAllergen exposurePathophysiologic mechanismsIL-13Deficient miceAirway Exposure Levels of Lipopolysaccharide Determine Type 1 versus Type 2 Experimental Asthma
Kim YK, Oh SY, Jeon SG, Park HW, Lee SY, Chun EY, Bang B, Lee HS, Oh MH, Kim YS, Kim JH, Gho YS, Cho SH, Min KU, Kim YY, Zhu Z. Airway Exposure Levels of Lipopolysaccharide Determine Type 1 versus Type 2 Experimental Asthma. The Journal Of Immunology 2007, 178: 5375-5382. PMID: 17404323, DOI: 10.4049/jimmunol.178.8.5375.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAnimalsAsthmaBronchial HyperreactivityFemaleHumansInterferon-gammaInterleukin-12LipopolysaccharidesMaleMiceMice, Inbred BALB CMice, Inbred C57BLMiddle AgedOvalbuminReceptors, Tumor Necrosis FactorRNA, MessengerSignal TransductionSTAT4 Transcription FactorTh1 CellsTh2 CellsTransforming Growth Factor beta1Tumor Necrosis Factor-alphaConceptsHigh-dose LPSLow-dose LPSAsthma phenotypesAdaptive immune responsesImmune responseAirway hyperresponsivenessAllergen sensitizationTNF-alpha receptor-deficient miceType 1IFN-gamma-deficient miceSevere asthma patientsReceptor-deficient miceAllergen-specific IgEExposure levelsIL-12 expressionTNF-alpha expressionIFN-gamma expressionLow LPS levelsNoneosinophilic inflammationAirway inflammationAllergic asthmaNeutrophilic inflammationSevere asthmaAirway exposureAsthma patientsRecombinant basic fibroblast growth factor inhibits the airway hyperresponsiveness, mucus production, and lung inflammation induced by an allergen challenge
Jeon SG, Lee CG, Oh MH, Chun EY, Gho YS, Cho SH, Kim JH, Min KU, Kim YY, Kim YK, Elias JA. Recombinant basic fibroblast growth factor inhibits the airway hyperresponsiveness, mucus production, and lung inflammation induced by an allergen challenge. Journal Of Allergy And Clinical Immunology 2007, 119: 831-837. PMID: 17289133, DOI: 10.1016/j.jaci.2006.12.653.Peer-Reviewed Original ResearchConceptsAsthma mouse modelLung inflammationBasic fibroblast growth factorAsthma phenotypesMucus productionFibroblast growth factorAllergen challengeTg miceRecombinant FGF2Therapeutic effectMouse modelWild-type control miceGrowth factorDevelopment of AHRTGF-beta1 miceRegional lymph nodesWhole-body plethysmographyDevelopment of asthmaBronchoalveolar lavage cellularityRecombinant basic fibroblast growth factorFGF2-deficient micePeriodic acid-Schiff stainingFGF2 mRNA expressionRole of FGF2Acid-Schiff staining