Featured Publications
Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function
Yu G, Tzouvelekis A, Wang R, Herazo-Maya JD, Ibarra GH, Srivastava A, de Castro JPW, DeIuliis G, Ahangari F, Woolard T, Aurelien N, Arrojo e Drigo R, Gan Y, Graham M, Liu X, Homer RJ, Scanlan TS, Mannam P, Lee PJ, Herzog EL, Bianco AC, Kaminski N. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nature Medicine 2017, 24: 39-49. PMID: 29200204, PMCID: PMC5760280, DOI: 10.1038/nm.4447.Peer-Reviewed Original Research
2024
Noninvasive assessment of the lung inflammation-fibrosis axis by targeted imaging of CMKLR1
Mannes P, Adams T, Farsijani S, Barnes C, Latoche J, Day K, Nedrow J, Ahangari F, Kaminski N, Lee J, Tavakoli S. Noninvasive assessment of the lung inflammation-fibrosis axis by targeted imaging of CMKLR1. Science Advances 2024, 10: eadm9817. PMID: 38896611, PMCID: PMC11186491, DOI: 10.1126/sciadv.adm9817.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisFibrotic lung diseaseRisk stratificationMurine modelLung fibrosisLung diseaseModel of bleomycin-induced lung fibrosisBleomycin-induced lung fibrosisImaging biomarkersMurine model of bleomycin-induced lung fibrosisBronchoalveolar lavage cellsMonocyte-derived macrophagesPositron emission tomographyInflammatory endotypesPulmonary fibrosisLavage cellsPoor survivalNoninvasive assessmentTherapeutic monitoringEmission tomographyCMKLR1FibrosisClinical trajectoryLungLung regions
2022
Characterization of the COPD alveolar niche using single-cell RNA sequencing
Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T, Werder RB, Schupp JC, Nouws J, Robertson MJ, Coarfa C, Yang T, Chioccioli M, Omote N, Cosme C, Poli S, Ayaub EA, Chu SG, Jensen KH, Gomez JL, Britto CJ, Raredon MSB, Niklason LE, Wilson AA, Timshel PN, Kaminski N, Rosas IO. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nature Communications 2022, 13: 494. PMID: 35078977, PMCID: PMC8789871, DOI: 10.1038/s41467-022-28062-9.Peer-Reviewed Original ResearchConceptsSingle-cell RNA sequencingRNA sequencingCell-specific mechanismsChronic obstructive pulmonary diseaseAdvanced chronic obstructive pulmonary diseaseTranscriptomic network analysisSingle-cell RNA sequencing profilesCellular stress toleranceAberrant cellular metabolismStress toleranceRNA sequencing profilesTranscriptional evidenceCellular metabolismAlveolar nicheSequencing profilesHuman alveolar epithelial cellsChemokine signalingAlveolar epithelial type II cellsObstructive pulmonary diseaseSitu hybridizationType II cellsEpithelial type II cellsSequencingCOPD pathobiologyHuman lung tissue samples
2021
Distinct roles of KLF4 in mesenchymal cell subtypes during lung fibrogenesis
Chandran RR, Xie Y, Gallardo-Vara E, Adams T, Garcia-Milian R, Kabir I, Sheikh AQ, Kaminski N, Martin KA, Herzog EL, Greif DM. Distinct roles of KLF4 in mesenchymal cell subtypes during lung fibrogenesis. Nature Communications 2021, 12: 7179. PMID: 34893592, PMCID: PMC8664937, DOI: 10.1038/s41467-021-27499-8.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell ProliferationDisease Models, AnimalDown-RegulationExtracellular MatrixFemaleFibroblastsFibrosisHumansKruppel-Like Factor 4LungLung InjuryMaleMesenchymal Stem CellsMiceMice, Inbred C57BLMyofibroblastsReceptor, Platelet-Derived Growth Factor betaRespiratory Tract DiseasesSignal TransductionTransforming Growth Factor betaConceptsMesenchymal cell typesPlatelet-derived growth factor receptorSmooth muscle actinLung fibrosisKruppel-like factor 4Forkhead box M1Growth factor receptorCell transitionCell typesExtracellular matrixDistinct rolesKLF4Box M1C chemokine ligandMesenchymal cell subtypesFactor receptorPro-fibrotic effectsFactor 4PDGFRMesenchymeCellsMacrophage accumulationKLF4 levelsChemokine ligandLung fibrogenesis
2020
Retrograde signaling by a mtDNA-encoded non-coding RNA preserves mitochondrial bioenergetics
Blumental-Perry A, Jobava R, Bederman I, Degar A, Kenche H, Guan B, Pandit K, Perry N, Molyneaux N, Wu J, Prendergas E, Ye Z, Zhang J, Nelson C, Ahangari F, Krokowski D, Guttentag S, Linden P, Townsend D, Miron A, Kang M, Kaminski N, Perry Y, Hatzoglou M. Retrograde signaling by a mtDNA-encoded non-coding RNA preserves mitochondrial bioenergetics. Communications Biology 2020, 3: 626. PMID: 33127975, PMCID: PMC7603330, DOI: 10.1038/s42003-020-01322-4.Peer-Reviewed Original ResearchConceptsMitochondrial genomeNuclear-encoded genesCell type-specific mannerNon-coding RNASteady-state transcriptionMitochondrial energy metabolismControl regionPositive regulationMitochondrial bioenergeticsMitochondria stressMitochondrial functionSpecific mannerAlveolar epithelial type II cellsEnergy metabolismType II cellsEpithelial type II cellsGenomePhysiological stressRNAII cellsCellsMouse lungTranscriptionGenesMitochondriaCMH-Small Molecule Docks into SIRT1, Elicits Human IPF-Lung Fibroblast Cell Death, Inhibits Ku70-deacetylation, FLIP and Experimental Pulmonary Fibrosis
Konikov-Rozenman J, Breuer R, Kaminski N, Wallach-Dayan SB. CMH-Small Molecule Docks into SIRT1, Elicits Human IPF-Lung Fibroblast Cell Death, Inhibits Ku70-deacetylation, FLIP and Experimental Pulmonary Fibrosis. Biomolecules 2020, 10: 997. PMID: 32630842, PMCID: PMC7408087, DOI: 10.3390/biom10070997.Peer-Reviewed Original ResearchMeSH KeywordsAcetylationAnimalsBinding SitesCASP8 and FADD-Like Apoptosis Regulating ProteinCell LineCell SurvivalDisease Models, AnimalFibroblastsGene Expression RegulationHumansHydroxamic AcidsIdiopathic Pulmonary FibrosisKu AutoantigenLungMaleMiceMice, Inbred C57BLModels, MolecularMolecular Docking SimulationProtein ConformationProtein StabilitySirtuin 1ConceptsIdiopathic pulmonary fibrosisPulmonary fibrosisFibrotic-lung myofibroblastsProgressive lung diseaseExperimental pulmonary fibrosisFibroblast cell deathLung diseaseLung fibrosisLung sectionsVital organsFlow cytometryFibrosisMyofibroblast resistanceRegenerative capacityFLIP levelsCell survivalCell deathImmunoblotCmHSIRT1Activity inhibitionUseful strategySmall moleculesBleomycinMyofibroblastsCollagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis
Tsukui T, Sun KH, Wetter JB, Wilson-Kanamori JR, Hazelwood LA, Henderson NC, Adams TS, Schupp JC, Poli SD, Rosas IO, Kaminski N, Matthay MA, Wolters PJ, Sheppard D. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nature Communications 2020, 11: 1920. PMID: 32317643, PMCID: PMC7174390, DOI: 10.1038/s41467-020-15647-5.Peer-Reviewed Original ResearchConceptsCollagen-producing cellsSitu hybridization showDisease-relevant phenotypesCell atlasDistinct localizationExpression of CTHRC1Fibrotic lungsDifferent compartmentsPulmonary fibrosisDistinct anatomical localizationCellsCTHRC1Murine lungFibroblastsIdiopathic pulmonary fibrosisAdoptive transfer experimentsLocalizationSubpopulationsComplex architectureTransfer experimentsFibroblastic fociPathologic fibrosisPathologic scarringScleroderma patientsSimilar heterogeneity
2019
Elevated CO2 regulates the Wnt signaling pathway in mammals, Drosophila melanogaster and Caenorhabditis elegans
Shigemura M, Lecuona E, Angulo M, Dada LA, Edwards MB, Welch LC, Casalino-Matsuda SM, Sporn PHS, Vadász I, Helenius IT, Nader GA, Gruenbaum Y, Sharabi K, Cummins E, Taylor C, Bharat A, Gottardi CJ, Beitel GJ, Kaminski N, Budinger GRS, Berdnikovs S, Sznajder JI. Elevated CO2 regulates the Wnt signaling pathway in mammals, Drosophila melanogaster and Caenorhabditis elegans. Scientific Reports 2019, 9: 18251. PMID: 31796806, PMCID: PMC6890671, DOI: 10.1038/s41598-019-54683-0.Peer-Reviewed Original ResearchConceptsLarge-scale transcriptomic studyAvailable transcriptomic datasetsCell linesWnt pathway genesOrganismal functionDrosophila melanogasterElevated CO2Different tissue originsTranscriptomic studiesBronchial cell lineCO2 elevationTranscriptomic datasetsGenomic responsesHuman bronchial cell linePathway genesGene expressionDifferent tissuesGenesHigh CO2Tissue originMammalsSkeletal musclePathwayCaenorhabditisMelanogasterRole of dual-specificity protein phosphatase DUSP10/MKP-5 in pulmonary fibrosis
Xylourgidis N, Min K, Ahangari F, Yu G, Herazo-Maya JD, Karampitsakos T, Aidinis V, Binzenhöfer L, Bouros D, Bennett AM, Kaminski N, Tzouvelekis A. Role of dual-specificity protein phosphatase DUSP10/MKP-5 in pulmonary fibrosis. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2019, 317: l678-l689. PMID: 31483681, PMCID: PMC6879900, DOI: 10.1152/ajplung.00264.2018.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibiotics, AntineoplasticBleomycinDual-Specificity PhosphatasesFemaleFibroblastsHumansMAP Kinase Signaling SystemMiceMice, Inbred C57BLMice, KnockoutMitogen-Activated Protein Kinase PhosphatasesPhosphorylationPulmonary FibrosisSignal TransductionTransforming Growth Factor beta1ConceptsPulmonary fibrosisLung fibrosisFibrogenic genesLung fibroblastsM1 macrophage phenotypeIdiopathic pulmonary fibrosisHuman lung fibrosisGrowth factor-β1Levels of hydroxyprolineProtein kinase phosphatase 5IPF lungsReduced fibrosisMuscle fibrosisProfibrogenic effectsTGF-β1Smad7 levelsTherapeutic targetAnimal modelsFactor-β1FibrosisSmad3 phosphorylationEnhanced p38 MAPK activityP38 MAPK activityMyofibroblast differentiationMKP-5 expressionIntegrating multiomics longitudinal data to reconstruct networks underlying lung development
Ding J, Ahangari F, Espinoza CR, Chhabra D, Nicola T, Yan X, Lal CV, Hagood JS, Kaminski N, Bar-Joseph Z, Ambalavanan N. Integrating multiomics longitudinal data to reconstruct networks underlying lung development. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2019, 317: l556-l568. PMID: 31432713, PMCID: PMC6879899, DOI: 10.1152/ajplung.00554.2018.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornChildChild, PreschoolDNA MethylationEpigenesis, GeneticFemaleGene Expression ProfilingGene Expression Regulation, DevelopmentalGene Regulatory NetworksHigh-Throughput Nucleotide SequencingHumansImmunity, InnateInfantInfant, NewbornLungMaleMiceMice, Inbred C57BLMicroRNAsOrganogenesisProteomicsPulmonary AlveoliRNA, MessengerSingle-Cell AnalysisTranscriptomeConceptsSingle-cell RNA-seq dataLung developmentDynamic regulatory networksOmics data setsRNA-seq dataIndividual cell typesHuman lung developmentRegulatory networksDNA methylationLaser capture microdissectionEpigenetic changesExpression trajectoriesKey pathwaysCell typesActive pathwaysCapture microdissectionRegulatorKey eventsInnate immunityNew insightsSpecific key eventsPathwayComprehensive understandingProteomicsMethylation
2018
BPIFA1 regulates lung neutrophil recruitment and interferon signaling during acute inflammation
Britto CJ, Niu N, Khanal S, Huleihel L, Herazo-Maya J, Thompson A, Sauler M, Slade MD, Sharma L, Dela Cruz CS, Kaminski N, Cohn LE. BPIFA1 regulates lung neutrophil recruitment and interferon signaling during acute inflammation. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2018, 316: l321-l333. PMID: 30461288, PMCID: PMC6397348, DOI: 10.1152/ajplung.00056.2018.Peer-Reviewed Original ResearchMeSH KeywordsAcute DiseaseAnimalsGlycoproteinsInflammationLipopolysaccharidesLungMice, Inbred C57BLNeutrophil InfiltrationPhosphoproteinsConceptsLung inflammationAcute inflammationC motif chemokine ligand 10Lung neutrophil recruitmentRegulation of CXCL10Acute lung inflammationBronchoalveolar lavage concentrationsChemokine ligand 10Innate immune responseIFN regulatory factorIntranasal LPSLavage concentrationsLung recruitmentNeutrophil recruitmentWT miceImmune effectsLung diseasePMN recruitmentInflammatory responseLPS treatmentLung tissueInflammatory signalsImmune responseImmunomodulatory propertiesInflammationHypercapnia increases airway smooth muscle contractility via caspase-7–mediated miR-133a–RhoA signaling
Shigemura M, Lecuona E, Angulo M, Homma T, Rodríguez DA, Gonzalez-Gonzalez FJ, Welch LC, Amarelle L, Kim SJ, Kaminski N, Budinger GRS, Solway J, Sznajder JI. Hypercapnia increases airway smooth muscle contractility via caspase-7–mediated miR-133a–RhoA signaling. Science Translational Medicine 2018, 10 PMID: 30185650, PMCID: PMC6889079, DOI: 10.1126/scitranslmed.aat1662.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcholineAgedAged, 80 and overAirway ResistanceAnimalsCalciumCalpainCarbon DioxideCaspase 7Chronic DiseaseDown-RegulationEnzyme ActivationFemaleHumansHypercapniaMaleMEF2 Transcription FactorsMice, Inbred C57BLMicroRNAsMiddle AgedMuscle ContractionMuscle, SmoothMyocytes, Smooth MusclePulmonary Disease, Chronic ObstructiveRhoA GTP-Binding ProteinSignal TransductionConceptsChronic obstructive pulmonary diseaseAirway smooth muscle cellsSmooth muscle cellsMouse airway smooth muscle cellsSevere chronic obstructive pulmonary diseaseHuman airway smooth muscle cellsAirway smooth muscle contractilityMuscle cellsCorrection of hypercapniaSmooth muscle cell contractionCohort of patientsObstructive pulmonary diseaseHigh airway resistanceSevere lung diseaseDevelopment of hypercapniaSmooth muscle contractilityMuscle cell contractionRas homolog family member AMyosin light chain phosphorylationAirway contractilityAirway contractionHypercapnic patientsCOPD severityPulmonary diseaseAirway resistanceReducing protein oxidation reverses lung fibrosis
Anathy V, Lahue KG, Chapman DG, Chia SB, Casey DT, Aboushousha R, van der Velden JLJ, Elko E, Hoffman SM, McMillan DH, Jones JT, Nolin JD, Abdalla S, Schneider R, Seward DJ, Roberson EC, Liptak MD, Cousins ME, Butnor KJ, Taatjes DJ, Budd RC, Irvin CG, Ho YS, Hakem R, Brown KK, Matsui R, Bachschmid MM, Gomez JL, Kaminski N, van der Vliet A, Janssen-Heininger YMW. Reducing protein oxidation reverses lung fibrosis. Nature Medicine 2018, 24: 1128-1135. PMID: 29988126, PMCID: PMC6204256, DOI: 10.1038/s41591-018-0090-y.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsFemaleGlutaredoxinsGlutathioneIdiopathic Pulmonary FibrosisLungMice, Inbred C57BLMice, TransgenicOxidation-ReductionProteinsConceptsIdiopathic pulmonary fibrosisPulmonary fibrosisLung fibrosisDirect administrationAirways of miceGrowth factor beta 1Transgenic mouse modelFibrotic lungsLung tissueMouse modelAged animalsFibrosisLung epitheliumTherapeutic potentialExcessive depositionBeta 1Transgenic overexpressionOxidative stressExact mechanismAirwayGlrxLungMiceAdministrationOxidative mechanisms
2017
Modified mesenchymal stem cells using miRNA transduction alter lung injury in a bleomycin model
Huleihel L, Sellares J, Cardenes N, Álvarez D, Faner R, Sakamoto K, Yu G, Kapetanaki MG, Kaminski N, Rojas M. Modified mesenchymal stem cells using miRNA transduction alter lung injury in a bleomycin model. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2017, 313: l92-l103. PMID: 28385811, PMCID: PMC5538868, DOI: 10.1152/ajplung.00323.2016.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomarkersBleomycinBone Marrow CellsCollagenCytokinesDisease Models, AnimalFemaleGene Expression RegulationGene Regulatory NetworksHumansInterleukin-6Leukocyte Common AntigensLung InjuryMesenchymal Stem Cell TransplantationMesenchymal Stem CellsMice, Inbred C57BLMicroRNAsRNA, MessengerSurvival AnalysisTransduction, GeneticTransfectionWeight LossConceptsBone marrow-derived mesenchymal stem cellsMesenchymal stem cellsLung fibrosisLate administrationBleomycin modelMiR-154Different preclinical modelsStem cellsCD45-positive cellsMurine bleomycin modelMarrow-derived mesenchymal stem cellsInitial weight lossLower survival rateAshcroft scoreLung injuryBleomycin instillationFibrotic changesCytokine expressionMice groupsLung tissueOH-prolinePreclinical modelsProtective effectTreatment groupsSurvival rate
2016
SH2 Domain–Containing Phosphatase-2 Is a Novel Antifibrotic Regulator in Pulmonary Fibrosis
Tzouvelekis A, Yu G, Lino Cardenas CL, Herazo-Maya JD, Wang R, Woolard T, Zhang Y, Sakamoto K, Lee H, Yi JS, DeIuliis G, Xylourgidis N, Ahangari F, Lee PJ, Aidinis V, Herzog EL, Homer R, Bennett AM, Kaminski N. SH2 Domain–Containing Phosphatase-2 Is a Novel Antifibrotic Regulator in Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2016, 195: 500-514. PMID: 27736153, PMCID: PMC5378419, DOI: 10.1164/rccm.201602-0329oc.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisPulmonary fibrosisProfibrotic stimuliLung fibroblastsChronic fatal lung diseaseMyofibroblast differentiationPrimary human lung fibroblastsFatal lung diseaseNovel therapeutic strategiesVivo therapeutic effectPotential therapeutic usefulnessHuman lung fibroblastsMouse lung fibroblastsDismal prognosisFibroblastic fociLung fibrosisLung diseaseBleomycin modelTherapeutic effectTherapeutic usefulnessTherapeutic strategiesTherapeutic targetTransgenic miceFibrosisSHP2 overexpression
2015
Regulation of alveolar septation by microRNA-489
Olave N, Lal CV, Halloran B, Pandit K, Cuna AC, Faye-Petersen OM, Kelly DR, Nicola T, Benos PV, Kaminski N, Ambalavanan N. Regulation of alveolar septation by microRNA-489. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2015, 310: l476-l487. PMID: 26719145, PMCID: PMC4773841, DOI: 10.1152/ajplung.00145.2015.Peer-Reviewed Original ResearchConceptsBronchopulmonary dysplasiaMiR-489Alveolar septationLung developmentInsulin-like growth factor-1Abnormal lung developmentGrowth factor-1MiR-489 overexpressionNormal pretermTerm infantsC57BL/6 miceMouse lung developmentTherapeutic strategiesMiRNA-489HyperoxiaEpithelial originFurther inhibitionIGF1Factor 1MiRNA antagonistsNormoxiaTenascin CMiRNA profilesCytomegalovirus promoterInfantsVCAM-1 is a TGF-β1 inducible gene upregulated in idiopathic pulmonary fibrosis
Agassandian M, Tedrow JR, Sembrat J, Kass DJ, Zhang Y, Goncharova EA, Kaminski N, Mallampalli RK, Vuga LJ. VCAM-1 is a TGF-β1 inducible gene upregulated in idiopathic pulmonary fibrosis. Cellular Signalling 2015, 27: 2467-2473. PMID: 26386411, PMCID: PMC4684430, DOI: 10.1016/j.cellsig.2015.09.003.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisVCAM-1IPF subjectsPulmonary fibrosisVascular cell adhesion molecule-1Lethal interstitial lung diseaseVCAM-1 protein levelsCell adhesion molecule-1Interstitial lung diseaseLungs of subjectsProtein levelsHigher plasma levelsVCAM-1 mRNAAdhesion molecule-1Pulmonary diffusion capacityHuman lung fibroblastsIPF lungsLung functionFibrotic fociVital capacityLung diseaseUnknown etiologyControl subjectsPlasma levelsCell cycle arrestFK506-Binding Protein 10, a Potential Novel Drug Target for Idiopathic Pulmonary Fibrosis
Staab-Weijnitz CA, Fernandez IE, Knüppel L, Maul J, Heinzelmann K, Juan-Guardela BM, Hennen E, Preissler G, Winter H, Neurohr C, Hatz R, Lindner M, Behr J, Kaminski N, Eickelberg O. FK506-Binding Protein 10, a Potential Novel Drug Target for Idiopathic Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2015, 192: 455-467. PMID: 26039104, PMCID: PMC4595665, DOI: 10.1164/rccm.201412-2233oc.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisPrimary human lung fibroblastsGrowth factor-β1Endoplasmic reticulum stressPulmonary fibrosisFKBP10 expressionLung fibrosisNovel drug targetsControl subjectsFactor-β1Protein 10Immunofluorescent stainingReticulum stressReverse transcriptase-polymerase chain reactionQuantitative reverse transcriptase-polymerase chain reactionTranscriptase-polymerase chain reactionSmooth muscle actinPotential novel drug targetsHuman lung fibroblastsCollagen secretionDrug targetsWestern blot analysisProfibrotic mediatorsU.S. cohortGerman cohort
2014
Secreted Phosphoprotein 1 Is a Determinant of Lung Function Development in Mice
Ganguly K, Martin TM, Concel VJ, Upadhyay S, Bein K, Brant KA, George L, Mitra A, Thimraj TA, Fabisiak JP, Vuga LJ, Fattman C, Kaminski N, Schulz H, Leikauf GD. Secreted Phosphoprotein 1 Is a Determinant of Lung Function Development in Mice. American Journal Of Respiratory Cell And Molecular Biology 2014, 51: 637-651. PMID: 24816281, PMCID: PMC4224082, DOI: 10.1165/rcmb.2013-0471oc.Peer-Reviewed Original ResearchMeSH KeywordsAlveolar Epithelial CellsAnimalsAnimals, NewbornCore Binding Factor Alpha 1 SubunitFemaleGene Expression Regulation, DevelopmentalLung ComplianceMaleMice, Inbred C3HMice, Inbred C57BLMice, KnockoutOligonucleotide Array Sequence AnalysisOsteopontinPromoter Regions, GeneticPulmonary AlveoliPulmonary Disease, Chronic ObstructiveReceptor, Notch1ConceptsMicroarray analysisPhosphoprotein 1Quantitative trait lociLung functionQuantitative RT-PCR analysisDNA-protein bindingRunt-related transcription factor 2Transcription factor 2Developmental transcriptsLung developmentTrait lociNumerous genesSecreted Phosphoprotein 1Notch1 transcriptsRT-PCR analysisInsulin-like growth factor-1C3H/HeJ miceDiminished lung functionLung function developmentSPP1 promoterSPP1Growth factor-1Mean airspace chord lengthC3H/HeJGenetic variantsMicroRNA mimicry blocks pulmonary fibrosis
Montgomery RL, Yu G, Latimer PA, Stack C, Robinson K, Dalby CM, Kaminski N, van Rooij E. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Molecular Medicine 2014, 6: 1347-1356. PMID: 25239947, PMCID: PMC4287936, DOI: 10.15252/emmm.201303604.Peer-Reviewed Original Research