2007
The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome
Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, Cline GW, Befroy D, Zemany L, Kahn BB, Papademetris X, Rothman DL, Shulman GI. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 12587-12594. PMID: 17640906, PMCID: PMC1924794, DOI: 10.1073/pnas.0705408104.Peer-Reviewed Original ResearchConceptsPlasma high-density lipoprotein concentrationsHigh-density lipoprotein concentrationsHepatic de novo lipogenesisMuscle glycogen synthesisInsulin resistanceInsulin-resistant subjectsPlasma triglyceride concentrationsDe novo lipogenesisMetabolic syndromeAtherogenic dyslipidemiaIL-6Lipoprotein concentrationsTNF-alphaPlasma concentrationsTriglyceride concentrationsNovo lipogenesisGlycogen synthesisIntraabdominal fat volumeSkeletal muscle insulin resistanceSkeletal muscleProtein 4Skeletal muscle glycogen synthesisMuscle insulin resistanceHepatic triglyceride synthesisIntraabdominal obesity
2001
Stimulating Effects of Low-Dose Fructose on Insulin-Stimulated Hepatic Glycogen Synthesis in Humans
Petersen K, Laurent D, Yu C, Cline G, Shulman G. Stimulating Effects of Low-Dose Fructose on Insulin-Stimulated Hepatic Glycogen Synthesis in Humans. Diabetes 2001, 50: 1263-1268. PMID: 11375325, DOI: 10.2337/diabetes.50.6.1263.Peer-Reviewed Original ResearchConceptsNet hepatic glycogen synthesisHepatic glycogen synthesisGlycogen synthesisSynthase fluxInfusion of fructoseLow-dose infusionType 2 diabetesEuglycemic hyperinsulinemic conditionsPotential therapeutic valueHepatic glycogen metabolismThreefold increaseFructose studiesEuglycemic hyperinsulinemiaHyperinsulinemic conditionsFructose infusionControl studyTherapeutic valueInfusionType 1Glucokinase activityGlycogen metabolismIndirect pathwaysStimulating effectInsulinStimulationSyntaxin 4 heterozygous knockout mice develop muscle insulin resistance
Yang C, Coker K, Kim J, Mora S, Thurmond D, Davis A, Yang B, Williamson R, Shulman G, Pessin J. Syntaxin 4 heterozygous knockout mice develop muscle insulin resistance. Journal Of Clinical Investigation 2001, 107: 1311-1318. PMID: 11375421, PMCID: PMC209300, DOI: 10.1172/jci12274.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAdipose Tissue, BrownAnimalsBiological TransportGlucoseGlucose Clamp TechniqueGlucose Tolerance TestGlucose Transporter Type 4GlycogenGlycolysisHeterozygoteInsulin ResistanceLiverMembrane ProteinsMiceMice, KnockoutMonosaccharide Transport ProteinsMuscle ProteinsMuscle, SkeletalQa-SNARE ProteinsConceptsHeterozygous knockout miceInsulin-stimulated glucose uptakeGlucose uptakeKnockout miceNormal insulin-stimulated glucose uptakeWhole-body glucose uptakeHyperinsulinemic-euglycemic clamp procedureInsulin-stimulated glucose metabolismInsulin-stimulated GLUT4 translocationSkeletal muscleGLUT4 vesicle traffickingImpaired glucose toleranceMuscle insulin resistanceEarly embryonic lethalitySkeletal muscle glucose transportMuscle glucose transportCritical physiological roleGlucose toleranceInsulin resistanceClamp procedureVesicle traffickingSyntaxin 4Embryonic lethalityGlucose metabolismAnimal modelsContribution of net hepatic glycogen synthesis to disposal of an oral glucose load in humans
Petersen K, Cline G, Gerard D, Magnusson I, Rothman D, Shulman G. Contribution of net hepatic glycogen synthesis to disposal of an oral glucose load in humans. Metabolism 2001, 50: 598-601. PMID: 11319724, DOI: 10.1053/meta.2001.22561.Peer-Reviewed Original ResearchConceptsHepatic glycogen synthesisOral glucose loadGlucose loadMagnetic resonance imagingLiver glycogen synthesisNet hepatic glycogen synthesisLiver volumeGlycogen synthesisWhole-body glucose disposalGlycogen contentHepatic glycogen concentrationIngestion of glucoseLiver glycogen contentHepatic glycogen contentIdentical glucose loadHepatic UDP-glucoseGlucose disposalGroup 2Group 1Direct pathwayResonance imagingGlycogen concentrationMean maximum rateLiverIngestion
2000
Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle
Kim J, Michael M, Previs S, Peroni O, Mauvais-Jarvis F, Neschen S, Kahn B, Kahn C, Shulman G. Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. Journal Of Clinical Investigation 2000, 105: 1791-1797. PMID: 10862794, PMCID: PMC378504, DOI: 10.1172/jci8305.Peer-Reviewed Original ResearchConceptsInsulin resistanceSelective insulin resistanceMIRKO miceType 2 diabetesHyperinsulinemic-euglycemic conditionsInsulin-stimulated muscle glucose transportMuscle glucose transportMuscle-specific inactivationPrediabetic syndromeGlucose transportControl miceFat massInsulin receptor geneInsulin actionMiceRedistribution of substratesSkeletal muscleImportant associationPotential mechanismsReceptor geneObesityGlycogen synthesisTissueMuscleAdiposityEffects of Caffeine on Muscle Glycogen Utilization and the Neuroendocrine Axis during Exercise1
Laurent D, Schneider K, Prusaczyk W, Franklin C, Vogel S, Krssak M, Petersen K, Goforth H, Shulman G. Effects of Caffeine on Muscle Glycogen Utilization and the Neuroendocrine Axis during Exercise1. The Journal Of Clinical Endocrinology & Metabolism 2000, 85: 2170-2175. PMID: 10852448, DOI: 10.1210/jcem.85.6.6655.Peer-Reviewed Original ResearchConceptsMuscle glycogen contentMuscle glycogen utilizationGlycogen contentCaffeine ingestionNeuroendocrine axisGlycogen utilizationGlycogen-sparing effectFree fatty acid concentrationsBeta-endorphin levelsCaffeine-treated groupExercise-induced glycogen depletionMaximal oxygen consumptionEffects of caffeineHigher muscle glycogen contentPlacebo groupExercise enduranceFatty acid concentrationsPlasma concentrationsNeuroendocrine hormonesCortisol releaseProlonged exerciseGlycogen depletionPlasma lactateNormal valuesThigh musclesTransgenic mice overexpressing GLUT-1 protein in muscle exhibit increased muscle glycogenesis after exercise
Ren J, Barucci N, Marshall B, Hansen P, Mueckler M, Shulman G. Transgenic mice overexpressing GLUT-1 protein in muscle exhibit increased muscle glycogenesis after exercise. AJP Endocrinology And Metabolism 2000, 278: e588-e592. PMID: 10751190, DOI: 10.1152/ajpendo.2000.278.4.e588.Peer-Reviewed Original ResearchConceptsTg miceMuscle glycogen concentrationNT miceTransgenic miceGlycogen concentrationH postexerciseEDL musclesGastrocnemius muscleMuscle glycogenExtensor digitorum longus muscleMale transgenic miceIsolated EDL musclesAge-matched littermatesDigitorum longus muscleMuscle glycogen synthase activationMuscle glycogenesisLongus muscleMuscle glycogenolysisGLUT-1 proteinSynthase activationMicePostexerciseHuman GLUT-1GLUT-1Glycogen synthase activationMechanism of muscle glycogen autoregulation in humans
Laurent D, Hundal R, Dresner A, Price T, Vogel S, Petersen K, Shulman G. Mechanism of muscle glycogen autoregulation in humans. AJP Endocrinology And Metabolism 2000, 278: e663-e668. PMID: 10751200, DOI: 10.1152/ajpendo.2000.278.4.e663.Peer-Reviewed Original ResearchConceptsInsulin-stimulated ratesWhole body glucose oxidation ratesMuscle glycogenGlycogen loadingPlasma free fatty acid concentrationsWhole-body glucose uptakeFree fatty acid concentrationsMuscle glycogen contentGlucose oxidation ratesMuscle glycogen synthesisPlasma lactate concentrationTwofold increaseHyperinsulinemic clampGlycogen synthase activityFatty acid concentrationsLoading protocolGlucose infusionHealthy volunteersLactate concentrationGlycogen contentGlucose uptakeAnaerobic glycolysisGlycogen synthesisUnlabeled glucose infusionGlycogenGlycogen loading alters muscle glycogen resynthesis after exercise
Price T, Laurent D, Petersen K, Rothman D, Shulman G. Glycogen loading alters muscle glycogen resynthesis after exercise. Journal Of Applied Physiology 2000, 88: 698-704. PMID: 10658040, DOI: 10.1152/jappl.2000.88.2.698.Peer-Reviewed Original ResearchConceptsMaximum voluntary contractionGlycogen recoveryNOR trialMuscle glycogen resynthesisMuscle glycogen recoveryNormal resting levelsGlycogen resynthesisVoluntary contractionHeavy exercisePlantar flexionResting levelGlycogen concentrationGlycogen levelsSeparate occasionsSimilar glucoseUntrained subjectsTrialsGlycogen synthesisExerciseExtended recoverySubjectsRecoveryLevelsMinFlexion
1999
Metabolic control analysis of insulin-stimulated glucose disposal in rat skeletal muscle
Jucker B, Barucci N, Shulman G. Metabolic control analysis of insulin-stimulated glucose disposal in rat skeletal muscle. American Journal Of Physiology 1999, 277: e505-e512. PMID: 10484363, DOI: 10.1152/ajpendo.1999.277.3.e505.Peer-Reviewed Original ResearchConceptsInsulin-stimulated glucose disposalGlucose transport/phosphorylationGlucose disposalHyperinsulinemic clampAwake ratsInfusion protocolGlycogen synthesisSkeletal muscleGlucose infusion rateMuscle glucose disposalSkeletal muscle glucose disposalProtocol IRat skeletal muscleRate of glycolysisInfusion rateHindlimb musclesMajority of controlsImpaired Glucose Transport as a Cause of Decreased Insulin-Stimulated Muscle Glycogen Synthesis in Type 2 Diabetes
Cline G, Petersen K, Krssak M, Shen J, Hundal R, Trajanoski Z, Inzucchi S, Dresner A, Rothman D, Shulman G. Impaired Glucose Transport as a Cause of Decreased Insulin-Stimulated Muscle Glycogen Synthesis in Type 2 Diabetes. New England Journal Of Medicine 1999, 341: 240-246. PMID: 10413736, DOI: 10.1056/nejm199907223410404.Peer-Reviewed Original ResearchConceptsMuscle glycogen synthesisType 2 diabetes mellitusConcentrations of insulinNormal subjectsDiabetes mellitusGlucose metabolismGlycogen synthesisGlucose concentrationWhole-body glucose metabolismInsulin-stimulated muscle glycogen synthesisIntracellular glucose concentrationType 2 diabetesPlasma insulin concentrationGlucose transportImpaired glucose transportInterstitial fluid glucose concentrationsOpen-flow microperfusionIntramuscular glucoseInterstitial fluidGlucose-6-phosphate concentrationInsulin resistanceVivo microdialysisInsulin concentrationsHyperinsulinemic conditionsPatientsCellular mechanisms of insulin resistance in humans
Shulman G. Cellular mechanisms of insulin resistance in humans. The American Journal Of Cardiology 1999, 84: 3-10. PMID: 10418851, DOI: 10.1016/s0002-9149(99)00350-1.Peer-Reviewed Original ResearchConceptsType 2 diabetesInsulin resistanceMuscle glycogen synthesisFree fatty acidsGlucose productionHepatic gluconeogenesisInsulin-stimulated glucose metabolismInsulin-stimulated muscle glycogen synthesisBetter glucose controlCellular mechanismsHepatic glucose productionLiver glycogen concentrationGlycogen synthesisPathophysiologic defectsCombination therapyGlucose controlInsulin secretionInsulin receptor substrateHyperinsulinemic clampingPeripheral tissuesGlucose clearanceFFA levelsGlucose metabolismThiazolidinedione troglitazoneDiabetesContributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis
Petersen K, Krssak M, Navarro V, Chandramouli V, Hundal R, Schumann W, Landau B, Shulman G. Contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis. American Journal Of Physiology 1999, 276: e529-e535. PMID: 10070020, DOI: 10.1152/ajpendo.1999.276.3.e529.Peer-Reviewed Original ResearchConceptsNet hepatic glycogenolysisCirrhotic subjectsHepatic glycogenolysisControl subjectsGlucose productionFree insulin-like growth factor IInsulin-like growth factor IHepatic glycogen concentrationGrowth factor IHepatic glycogen contentMagnetic resonance imagingRate of gluconeogenesisBlood glucosePlasma levelsHealthy subjectsEffects of free fatty acids on glucose transport and IRS-1–associated phosphatidylinositol 3-kinase activity
Dresner A, Laurent D, Marcucci M, Griffin M, Dufour S, Cline G, Slezak L, Andersen D, Hundal R, Rothman D, Petersen K, Shulman G. Effects of free fatty acids on glucose transport and IRS-1–associated phosphatidylinositol 3-kinase activity. Journal Of Clinical Investigation 1999, 103: 253-259. PMID: 9916137, PMCID: PMC407880, DOI: 10.1172/jci5001.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultFatty Acids, NonesterifiedFemaleGlucoseGlucose Clamp TechniqueGlucose-6-PhosphateGlycerolGlycogenHumansHyperinsulinismInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceLipid MetabolismMagnetic Resonance SpectroscopyMaleMuscle, SkeletalPhosphatidylinositol 3-KinasesPhosphoproteinsConceptsFree fatty acidsIRS-1-associated phosphatidylinositolLipid infusionInsulin resistanceGlycerol infusionPlasma free fatty acidsWhole-body glucose uptakeFive-hour infusionLipid/heparinHyperinsulinemic-euglycemic clampGlucose concentrationGlucose transportMuscle glycogen synthesisDiminished glucose transportMuscle biopsy samplesHuman skeletal muscleRate of insulinGlucose-6-phosphate concentrationFatty acidsHealthy subjectsBiopsy samplesInfusion studiesIdentical protocolInfusionIRS-1-associated PI
1998
A novel 13C NMR method to assess intracellular glucose concentration in muscle, in vivo
Cline G, Jucker B, Trajanoski Z, Rennings A, Shulman G. A novel 13C NMR method to assess intracellular glucose concentration in muscle, in vivo. American Journal Of Physiology 1998, 274: e381-e389. PMID: 9486172, DOI: 10.1152/ajpendo.1998.274.2.e381.Peer-Reviewed Original ResearchEffect of epinephrine on muscle glycogenolysis and insulin-stimulated muscle glycogen synthesis in humans
Laurent D, Petersen K, Russell R, Cline G, Shulman G. Effect of epinephrine on muscle glycogenolysis and insulin-stimulated muscle glycogen synthesis in humans. American Journal Of Physiology 1998, 274: e130-e138. PMID: 9458758, DOI: 10.1152/ajpendo.1998.274.1.e130.Peer-Reviewed Original ResearchConceptsInsulin-stimulated muscle glycogen synthesisMuscle glycogen synthesisMuscle glycogenolysisEpinephrine infusionPhysiological increaseWhole-body glucose oxidationMuscle glycogen synthesis ratesPlasma epinephrine concentrationEuglycemic hyperinsulinemic clampGlucose infusion rateEffect of epinephrineGlycogen synthesisInsulin-stimulated glycogenesisBasal insulinControl subjectsPlasma glucoseEpinephrine concentrationsFree fatty acidsBasal valuesInfusion rateGlycogen synthesis rateMuscle glycogenEpinephrineGlycogenolysisMajor impairment
1997
Effects of insulin-like growth factor I on glucose metabolism in rats with liver cirrhosis
Petersen K, Jacob R, West A, Sherwin R, Shulman G. Effects of insulin-like growth factor I on glucose metabolism in rats with liver cirrhosis. American Journal Of Physiology 1997, 273: e1189-e1193. PMID: 9435535, DOI: 10.1152/ajpendo.1997.273.6.e1189.Peer-Reviewed Original ResearchConceptsMuscle glycogen synthesisInsulin-like growth factor ICirrhotic ratsGrowth factor IGlucose metabolismLiver cirrhosisGlycogen synthesisFactor IInsulin-stimulated muscle glycogen synthesisIGF-I therapyPeripheral glucose metabolismWhole-body glucose turnoverEndogenous glucose productionAbility of IGFEuglycemic clampInsulin resistanceControl ratsAwake ratsCirrhosisDiminished suppressionControl groupIGFRatsGlucose productionGlucose turnover13C and 31P NMR Studies on the Effects of Increased Plasma Free Fatty Acids on Intramuscular Glucose Metabolism in the Awake Rat*
Jucker B, Rennings A, Cline G, Shulman G. 13C and 31P NMR Studies on the Effects of Increased Plasma Free Fatty Acids on Intramuscular Glucose Metabolism in the Awake Rat*. Journal Of Biological Chemistry 1997, 272: 10464-10473. PMID: 9099689, DOI: 10.1074/jbc.272.16.10464.Peer-Reviewed Original ResearchMeSH KeywordsAlanineAnimalsCarbon IsotopesFatty Acids, NonesterifiedGlucoseGlucose Clamp TechniqueGlucose-6-PhosphateGlycogenGlycolysisHyperinsulinismInfusions, IntravenousInsulinKetonesKineticsLactatesMagnetic Resonance SpectroscopyModels, BiologicalMuscle, SkeletalPhosphorusPyruvatesRatsRats, Sprague-DawleyWakefulnessConceptsPlasma free fatty acids
1995
Contribution of Hepatic Glycogenolysis to Glucose Production in Humans in Response to a Physiological Increase in Plasma Glucagon Concentration
Magnusson I, Rothman D, Gerard D, Katz L, Shulman G. Contribution of Hepatic Glycogenolysis to Glucose Production in Humans in Response to a Physiological Increase in Plasma Glucagon Concentration. Diabetes 1995, 44: 185-189. PMID: 7859939, DOI: 10.2337/diab.44.2.185.Peer-Reviewed Original ResearchConceptsNet hepatic glycogenolysisLiver glycogen concentrationPlasma glucagon concentrationsHepatic glycogenolysisGlucagon concentrationsGlycogen concentrationLiver volumeGlucose productionPlasma glucose concentrationOverall glucose productionTwo-compartment modelHealthy subjectsPhysiological incrementsPhysiological increaseGlucose appearanceSame time periodMagnetic resonance imagesGlucose kineticsBaseline RaInfusionGlycogenolysisGlucose concentrationResonance imagesMumol
1994
Validation of 13C NMR measurements of liver glycogen in vivo
Gruetter R, Magnusson I, Rothman D, Avison M, Shulman R, Shulman G. Validation of 13C NMR measurements of liver glycogen in vivo. Magnetic Resonance In Medicine 1994, 31: 583-588. PMID: 8057810, DOI: 10.1002/mrm.1910310602.Peer-Reviewed Original Research