2024
1577-P: CIDEB Knockdown Promotes Increased Hepatic Mitochondrial Fat Oxidation and Reverses Hepatic Steatosis and Hepatic Insulin Resistance by the PKCε-Insulin Receptor Kinase Pathway
ZHENG J, NASIRI A, GASPAR R, HUBBARD B, SAKUMA I, MA X, MURRAY S, PERELIS M, BARNES W, SAMUEL V, PETERSEN K, SHULMAN G. 1577-P: CIDEB Knockdown Promotes Increased Hepatic Mitochondrial Fat Oxidation and Reverses Hepatic Steatosis and Hepatic Insulin Resistance by the PKCε-Insulin Receptor Kinase Pathway. Diabetes 2024, 73 DOI: 10.2337/db24-1577-p.Peer-Reviewed Original ResearchReceptor kinase pathwaysMitochondrial fat oxidationHepatic insulin resistanceKinase pathwayExpression of cidebAmeliorated HFD-induced hepatic steatosisHFD-induced hepatic steatosisHFD-induced insulin resistanceSteatotic liver diseasePathogenesis of type 2 diabetesHepatic steatosisCidebHyperinsulinemic-euglycemic clamp studiesHepatic triglyceride accumulationInsulin resistanceReverse hepatic steatosisTriglyceride accumulationHepatic insulin sensitivityInsulin sensitivityPathwayHepatic expressionHigh-fatWhole-body insulin sensitivityLiver diseaseTranslocation
2023
The PNPLA3 I148M variant increases ketogenesis and decreases hepatic de novo lipogenesis and mitochondrial function in humans
Luukkonen P, Porthan K, Ahlholm N, Rosqvist F, Dufour S, Zhang X, Lehtimäki T, Seppänen W, Orho-Melander M, Hodson L, Petersen K, Shulman G, Yki-Järvinen H. The PNPLA3 I148M variant increases ketogenesis and decreases hepatic de novo lipogenesis and mitochondrial function in humans. Cell Metabolism 2023, 35: 1887-1896.e5. PMID: 37909034, DOI: 10.1016/j.cmet.2023.10.008.Peer-Reviewed Original ResearchConceptsDe novo lipogenesisHepatic de novo lipogenesisPlasma β-hydroxybutyrate concentrationsΒ-hydroxybutyrate concentrationsLiver diseaseNovo lipogenesisPNPLA3 I148M variantHepatic mitochondrial redox stateMajor genetic risk factorI148M variantFatty liver diseaseGenetic risk factorsHepatic mitochondrial dysfunctionKetogenic dietMixed mealRisk factorsHepatic metabolismHomozygous carriersM carriersMitochondrial dysfunctionCitrate synthase fluxM variantKetogenesisMitochondrial redox stateMitochondrial functionHepatocyte CYR61 polarizes profibrotic macrophages to orchestrate NASH fibrosis
Mooring M, Yeung G, Luukkonen P, Liu S, Akbar M, Zhang G, Balogun O, Yu X, Mo R, Nejak-Bowen K, Poyurovsky M, Booth C, Konnikova L, Shulman G, Yimlamai D. Hepatocyte CYR61 polarizes profibrotic macrophages to orchestrate NASH fibrosis. Science Translational Medicine 2023, 15: eade3157. PMID: 37756381, PMCID: PMC10874639, DOI: 10.1126/scitranslmed.ade3157.Peer-Reviewed Original ResearchConceptsNonalcoholic steatohepatitisLiver inflammationNonalcoholic fatty liver diseaseProgression of NASHCysteine-rich angiogenic inducer 61Fatty liver diseaseLiver-specific knockout miceImproved glucose toleranceType 2 diabetesGlucose toleranceLiver diseaseNASH progressionProfibrotic macrophagesProinflammatory propertiesReduced fibrosisCardiovascular diseaseProfibrotic phenotypeFibrotic developmentKnockout miceNF-κBMetabolic diseasesNASH dietPDGFB expressionFibrosisProfibrotic program1558-P: The Mitochondrial Calcium Uniporter Regulates Hepatic Mitochondrial Oxidation and Intracellular Redox In Vivo
LAMOIA T, HUBBARD B, GUERRA M, GOODMAN R, NATHANSON M, SHULMAN G. 1558-P: The Mitochondrial Calcium Uniporter Regulates Hepatic Mitochondrial Oxidation and Intracellular Redox In Vivo. Diabetes 2023, 72 DOI: 10.2337/db23-1558-p.Peer-Reviewed Original ResearchNonalcoholic fatty liver diseaseHepatic mitochondrial oxidationMitochondrial calcium uniporterHepatocellular redox stateFatty liver diseaseEctopic lipid accumulationType 2 diabetesHepatic lipid contentNovel therapeutic targetMitochondrial oxidationHepatic triacylglycerol contentMitochondrial calcium influxMitochondrial redox ratioMitochondrial calciumKnockout mouse modelFortress BiotechMitochondrial fat oxidationNonalcoholic steatohepatitisLiver diseaseWT miceKO miceMetabolic dysfunctionCalcium uniporterCalcium influxMouse modelInhibition of HSD17B13 protects against liver fibrosis by inhibition of pyrimidine catabolism in nonalcoholic steatohepatitis
Luukkonen P, Sakuma I, Gaspar R, Mooring M, Nasiri A, Kahn M, Zhang X, Zhang D, Sammalkorpi H, Penttilä A, Orho-Melander M, Arola J, Juuti A, Zhang X, Yimlamai D, Yki-Järvinen H, Petersen K, Shulman G. Inhibition of HSD17B13 protects against liver fibrosis by inhibition of pyrimidine catabolism in nonalcoholic steatohepatitis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2217543120. PMID: 36669104, PMCID: PMC9942818, DOI: 10.1073/pnas.2217543120.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseLiver fibrosisLiver diseaseCommon chronic liver diseaseChronic liver diseaseFatty liver diseaseRisk of fibrosisDistinct mouse modelsPyrimidine catabolismNonalcoholic steatohepatitisMouse modelTherapeutic targetFibrosisDihydropyrimidine dehydrogenaseHuman liverA variantCommon variantsMetabolomics approachDiseaseMiceInhibitionCatabolismKnockdownSteatohepatitisGimeracil
2022
Dyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice
Bhat N, Narayanan A, Fathzadeh M, Kahn M, Zhang D, Goedeke L, Neogi A, Cardone RL, Kibbey RG, Fernandez-Hernando C, Ginsberg HN, Jain D, Shulman G, Mani A. Dyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice. Journal Of Clinical Investigation 2022, 132: e153724. PMID: 34855620, PMCID: PMC8803348, DOI: 10.1172/jci153724.Peer-Reviewed Original ResearchConceptsDe novo lipogenesisNonalcoholic steatohepatitisInsulin resistanceHepatic lipogenesisElevated de novo lipogenesisNonalcoholic fatty liver diseaseFatty liver diseaseLiver of patientsHepatic glycogen storageHigh-sucrose dietHepatic insulin resistanceFatty acid uptakeMetabolic syndromeLiver diseaseHepatic steatosisTriacylglycerol secretionNovo lipogenesisHepatic insulinTherapeutic targetImpaired activationAcid uptakeGlycogen storageMouse liverLiverLipogenesis
2021
Isthmin-1 is an adipokine that promotes glucose uptake and improves glucose tolerance and hepatic steatosis
Jiang Z, Zhao M, Voilquin L, Jung Y, Aikio MA, Sahai T, Dou FY, Roche AM, Carcamo-Orive I, Knowles JW, Wabitsch M, Appel EA, Maikawa CL, Camporez JP, Shulman GI, Tsai L, Rosen ED, Gardner CD, Spiegelman BM, Svensson KJ. Isthmin-1 is an adipokine that promotes glucose uptake and improves glucose tolerance and hepatic steatosis. Cell Metabolism 2021, 33: 1836-1852.e11. PMID: 34348115, PMCID: PMC8429235, DOI: 10.1016/j.cmet.2021.07.010.Peer-Reviewed Original ResearchConceptsFatty liver diseaseAdipose glucose uptakeGlucose toleranceLiver diseaseHepatic steatosisGlucose uptakeDiet-induced obese miceImpaired glucose toleranceInsulin-like growth factor receptorType 2 diabetesHepatic lipid synthesisIsthmin 1Growth factor receptorObese miceInsulin sensitivityTherapeutic dosingMouse modelGlucoregulatory functionGlucose regulationUnmet needTherapeutic potentialDiabetesLipid accumulationPI3K-AktFactor receptorMechanisms and disease consequences of nonalcoholic fatty liver disease
Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021, 184: 2537-2564. PMID: 33989548, DOI: 10.1016/j.cell.2021.04.015.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseProgressive liver injuryFatty liver diseaseNonalcoholic steatohepatitisLiver diseaseLiver injuryHepatocellular carcinomaEffect of NAFLDHepatic stellate cell activationChronic liver diseaseBile acid toxicityStellate cell activationFibrosis progressionAdvanced subtypesMacrophage dysfunctionPathogenetic mechanismsCell activationHepatic glucoseLipid metabolismDisease consequencesDiseaseAcid toxicityCarcinomaInjuryMetabolic originTherapeutic potential of mitochondrial uncouplers for the treatment of metabolic associated fatty liver disease and NASH
Goedeke L, Shulman GI. Therapeutic potential of mitochondrial uncouplers for the treatment of metabolic associated fatty liver disease and NASH. Molecular Metabolism 2021, 46: 101178. PMID: 33545391, PMCID: PMC8085597, DOI: 10.1016/j.molmet.2021.101178.Peer-Reviewed Original ResearchConceptsFatty liver diseaseLiver diseaseSmall molecule mitochondrial uncouplersTherapeutic potentialMitochondrial uncouplerNon-human primate studiesType 2 diabetesWide therapeutic indexSystemic toxicity concernsTreatment of MetabolicCell-specific effectsInsulin resistanceTherapeutic indexMetabolic diseasesNonalcoholic hepatosteatosisSustained increaseToxicity concernsPrimate studiesDiseaseTherapeutic developmentMitochondrial inefficiencyNutrient oxidationATP productionTreatmentTissue
2020
Hepatic Insulin Resistance Is Not Pathway Selective in Humans With Nonalcoholic Fatty Liver Disease.
Ter Horst KW, Vatner DF, Zhang D, Cline GW, Ackermans MT, Nederveen AJ, Verheij J, Demirkiran A, van Wagensveld BA, Dallinga-Thie GM, Nieuwdorp M, Romijn JA, Shulman GI, Serlie MJ. Hepatic Insulin Resistance Is Not Pathway Selective in Humans With Nonalcoholic Fatty Liver Disease. Diabetes Care 2020, 44: 489-498. PMID: 33293347, PMCID: PMC7818337, DOI: 10.2337/dc20-1644.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseDe novo lipogenesisFatty liver diseaseBariatric surgeryLiver diseaseImpaired insulin-mediated suppressionGlucose productionHepatic de novo lipogenesisPeripheral glucose metabolismHyperinsulinemic-euglycemic clampType 2 diabetesInsulin-mediated suppressionInsulin-resistant subjectsHepatic insulin resistanceLiver biopsy samplesSuppress glucose productionLipogenic transcription factorsInsulin-mediated regulationObese subjectsInsulin resistanceAcute increaseNovo lipogenesisGlucose metabolismBiopsy samplesParadoxical increaseMON-635 FDXR Regulates Iron Metabolism and Glucose Metabolism in Liver
Sakuma I, Yokoyama M, Yamagata K, Hashimoto N, Nakayama A, Shulman G, Tanaka T. MON-635 FDXR Regulates Iron Metabolism and Glucose Metabolism in Liver. Journal Of The Endocrine Society 2020, 4: mon-635. PMCID: PMC7207756, DOI: 10.1210/jendso/bvaa046.1557.Peer-Reviewed Original ResearchNon-alcoholic fatty liver diseaseForkhead box protein O1Iron metabolismFoxO1 nuclear exclusionOxidative stressFatty liver diseaseSerum ferritin levelsMouse liverHigh-fat dietType 2 diabetesPathogenesis of diabetesNovel therapeutic targetIron regulatory genesHepatic iron contentTreatment of diabetesHepG2 cellsBox protein O1Glucose intoleranceMost patientsFerritin levelsLiver diseaseClinical studiesGluconeogenesis activationFDXR expressionGlucose metabolismEffect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease
Luukkonen PK, Dufour S, Lyu K, Zhang XM, Hakkarainen A, Lehtimäki TE, Cline GW, Petersen KF, Shulman GI, Yki-Järvinen H. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 7347-7354. PMID: 32179679, PMCID: PMC7132133, DOI: 10.1073/pnas.1922344117.Peer-Reviewed Original ResearchMeSH KeywordsBody CompositionCitrate (si)-SynthaseDiet, KetogenicFatty AcidsFatty Acids, NonesterifiedFatty LiverFemaleHumansInsulinInsulin ResistanceLipoproteins, VLDLLiverMaleMiddle AgedMitochondriaNon-alcoholic Fatty Liver DiseaseObesityOverweightOxidation-ReductionPyruvate CarboxylaseTriglyceridesConceptsNonalcoholic fatty liver diseaseFatty liver diseaseIntrahepatic triglyceridesKetogenic dietHepatic insulin resistanceNonesterified fatty acidsInsulin resistanceLiver diseaseOverweight/obese subjectsHepatic mitochondrial redox stateSerum insulin concentrationsHepatic mitochondrial metabolismProton magnetic resonance spectroscopyStable isotope infusionKD dietObese subjectsFatty acidsPlasma leptinHepatic steatosisInsulin concentrationsNEFA concentrationsBody weightTriiodothyronine concentrationsIsotope infusionWeight lossGlucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis
Perry RJ, Zhang D, Guerra MT, Brill AL, Goedeke L, Nasiri AR, Rabin-Court A, Wang Y, Peng L, Dufour S, Zhang Y, Zhang XM, Butrico GM, Toussaint K, Nozaki Y, Cline GW, Petersen KF, Nathanson MH, Ehrlich BE, Shulman GI. Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis. Nature 2020, 579: 279-283. PMID: 32132708, PMCID: PMC7101062, DOI: 10.1038/s41586-020-2074-6.Peer-Reviewed Original ResearchConceptsHepatic steatosisType 2Nonalcoholic fatty liver diseaseDiet-induced hepatic steatosisFatty liver diseasePlasma glucagon concentrationsHepatic adipose triglyceride lipaseHepatic acetyl-CoA contentHepatic glucose productionRatio of insulinHepatic glucose metabolismInositol triphosphate receptorAdipose triglyceride lipaseMitochondrial oxidationMitochondrial fat oxidationGlucose intoleranceLiver diseaseGlucagon concentrationsInsulin resistancePortal veinAcetyl-CoA contentHepatic lipolysisGlucagon biologyGlucose metabolismKnockout miceNon‐alcoholic Fatty Liver Disease and Insulin Resistance
Petersen M, Samuel V, Petersen K, Shulman G. Non‐alcoholic Fatty Liver Disease and Insulin Resistance. 2020, 455-471. DOI: 10.1002/9781119436812.ch37.Peer-Reviewed Original ResearchNon-alcoholic fatty liver diseaseHepatic insulin resistanceFatty liver diseaseInsulin resistanceLiver diseaseDevelopment of NAFLDLipid-induced muscle insulin resistanceRandle glucose-fatty acid cycleCommon chronic liver diseaseType 2 diabetes mellitusHyperinsulinemic-euglycemic clamp studiesGlucose-fatty acid cycleLiver-related deathSkeletal muscleChronic liver diseaseNon-alcoholic steatohepatitisMajor risk factorLipid-induced hepatic insulin resistanceMuscle insulin resistanceDiabetes mellitusRisk factorsClamp studiesLipoprotein lipaseDiseaseProtein kinase C
2019
Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Ceramides
Samuel VT, Shulman GI. Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Ceramides. New England Journal Of Medicine 2019, 381: 1866-1869. PMID: 31693811, DOI: 10.1056/nejmcibr1910023.Peer-Reviewed Original ResearchControlled-release mitochondrial protonophore (CRMP) reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates
Goedeke L, Peng L, Montalvo-Romeral V, Butrico GM, Dufour S, Zhang XM, Perry RJ, Cline GW, Kievit P, Chng K, Petersen KF, Shulman GI. Controlled-release mitochondrial protonophore (CRMP) reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates. Science Translational Medicine 2019, 11 PMID: 31578240, PMCID: PMC6996238, DOI: 10.1126/scitranslmed.aay0284.Peer-Reviewed Original ResearchConceptsControlled-release mitochondrial protonophoreNonalcoholic fatty liver diseaseCRMP treatmentHepatic triglyceridesDiet-induced rodent modelReversal of hypertriglyceridemiaFatty liver diseaseNonhuman primate modelMitochondrial protonophoreEndogenous glucose productionLow-density lipoproteinMitochondrial fat oxidationHepatic inflammationMetabolic syndromeFatty liverLiver diseaseHepatic steatosisInsulin resistanceAdverse reactionsPlasma triglyceridesPrimate modelOral administrationFood intakeHepatic mitochondrial oxidationRodent models
2018
Mechanisms by Which Glucagon Acutely Stimulates Hepatic Mitochondrial Oxidation and Gluconeogenesis
PERRY R, WANG Y, BRILL A, PENG L, ZHANG D, DUFOUR S, ZHANG Y, ZHANG X, NOZAKI Y, CLINE G, EHRLICH B, PETERSEN K, SHULMAN G. Mechanisms by Which Glucagon Acutely Stimulates Hepatic Mitochondrial Oxidation and Gluconeogenesis. Diabetes 2018, 67 DOI: 10.2337/db18-146-or.Peer-Reviewed Original ResearchSpouse/partnerHigh-fat diet-induced hepatic steatosisNonalcoholic fatty liver diseaseDiet-induced hepatic steatosisGilead SciencesFatty liver diseasePlasma glucagon concentrationsType 2 diabetesHepatic acetyl-CoA contentLiver-specific knockdownIntracellular calcium signalingMitochondrial oxidationGlucose intoleranceAdipocyte triglyceride lipaseLiver diseaseWT miceGlucagon concentrationsHepatic steatosisGlucagon infusionAcetyl-CoA contentChronic increaseHepatic mitochondrial oxidationGlucagon biologyGlucagon stimulationKnockout mice
2017
Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms
Ferrandino G, Kaspari RR, Spadaro O, Reyna-Neyra A, Perry RJ, Cardone R, Kibbey RG, Shulman GI, Dixit VD, Carrasco N. Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: e9172-e9180. PMID: 29073114, PMCID: PMC5664516, DOI: 10.1073/pnas.1707797114.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseDe novo lipogenesisAdipose tissue lipolysisHepatic insulin resistanceThyroid hormonesHypothyroid miceImpaired suppressionInsulin resistanceTissue lipolysisInsulin secretionHigh thyroid-stimulating hormone levelsRegulation of THThyroid-stimulating hormone levelsLipid utilizationFatty liver diseaseSerum glucose levelsEndogenous glucose productionLow thyroid hormoneFatty acidsHepatic lipid utilizationLiver diseaseSevere hypothyroidismHormone levelsProfound suppressionGlucose levels
2016
Insulin Resistance in Type 2 Diabetes
Roden M, Petersen K, Shulman G. Insulin Resistance in Type 2 Diabetes. 2016, 174-186. DOI: 10.1002/9781118924853.ch13.Peer-Reviewed Original ResearchType 2 diabetesNon-alcoholic fatty liver diseaseInsulin resistanceInflammatory pathwaysAdipose tissueHepatic mitochondrial oxidative capacityLipid-mediated insulin resistanceFatty liver diseaseImpaired glucose toleranceDiabetes-related complicationsEctopic lipid accumulationΒ-cell dysfunctionFatty acid availabilityAction of insulinMitochondrial oxidative capacityAtherogenic dyslipidemiaMultiple deleterious effectsGlucose toleranceLiver diseaseCarbohydrate ingestionEctopic storagePostprandial hyperglycemiaSystemic abnormalitiesInhibits lipolysisFree fatty acids
2014
The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes
Perry RJ, Samuel VT, Petersen KF, Shulman GI. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 2014, 510: 84-91. PMID: 24899308, PMCID: PMC4489847, DOI: 10.1038/nature13478.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsType 2 diabetesHepatic insulin resistanceNon-alcoholic fatty liver diseaseFatty liver diseaseInsulin resistanceLiver diseaseHepatic lipidsHealth care costsInflammatory signalingTherapeutic approachesMortality rateDiabetesRelated epidemicsProtein kinase CεDiseaseCellular modificationsEpidemicLipid speciesMorbidityLipidsDiacylglycerol activationMice