Yury Nikolaev, MSc, PhD
Associate Research ScientistAbout
Research
Publications
2023
Molecular insights into the force-from-lipids gating of mechanosensitive channels
Bavi N, Cox C, Nikolaev Y, Martinac B. Molecular insights into the force-from-lipids gating of mechanosensitive channels. Current Opinion In Physiology 2023, 36: 100706. DOI: 10.1016/j.cophys.2023.100706.Peer-Reviewed Original ResearchMS channel gatingChannel gatingLipid bilayersMechanosensitive ion channelsLipid principleMechanosensitive channelsChannel proteinsPhysiological processesMolecular underpinningsMolecular insightsMembrane tensionIon channelsMolecular interactionsMechanical forcesCurrent understandingBilayer thinningNew insightsGatingBilayersBlood pressure regulationProteinRegulationInsightsCellsPressure regulation3D architecture and a bicellular mechanism of touch detection in mechanosensory corpuscle
Nikolaev Y, Ziolkowski L, Pang S, Li W, Feketa V, Xu C, Gracheva E, Bagriantsev S. 3D architecture and a bicellular mechanism of touch detection in mechanosensory corpuscle. Science Advances 2023, 9: eadi4147. PMID: 37703368, PMCID: PMC10499330, DOI: 10.1126/sciadv.adi4147.Peer-Reviewed Original ResearchHuman TRPV1 structure and inhibition by the analgesic SB-366791
Neuberger A, Oda M, Nikolaev Y, Nadezhdin K, Gracheva E, Bagriantsev S, Sobolevsky A. Human TRPV1 structure and inhibition by the analgesic SB-366791. Nature Communications 2023, 14: 2451. PMID: 37117175, PMCID: PMC10147690, DOI: 10.1038/s41467-023-38162-9.Peer-Reviewed Original ResearchConceptsSB-366791Transient receptor potential (TRP) ion channelsPotential ion channelsPain pathwaysPain therapyPain treatmentPsychiatric disordersOpioid crisisTherapy targetTRPV1 inhibitorElectrophysiological recordingsHuman TRPV1TRP channelsTRPV1New drugsDisease conditionsVanilloid subfamilyIon channelsTreatmentInhibitorsOpioidsPainTherapyDiseaseCryo-electron microscopy structure
2021
Extracellular cap domain is an essential component of the TRPV1 gating mechanism
Nadezhdin KD, Neuberger A, Nikolaev YA, Murphy LA, Gracheva EO, Bagriantsev SN, Sobolevsky AI. Extracellular cap domain is an essential component of the TRPV1 gating mechanism. Nature Communications 2021, 12: 2154. PMID: 33846324, PMCID: PMC8041747, DOI: 10.1038/s41467-021-22507-3.Peer-Reviewed Original ResearchConceptsCap domainC-terminusIon conductance pathwaysNumerous physiological processesTransient receptor potential channelsTRP channel familyCryo-EMPhysiological processesChannel familyExtracellular entranceHuman diseasesGating mechanismΒ-sheetConductance pathwayCritical determinantMolecular sensorsOpen probabilityPotential channelsIon selectivityEssential componentTRPV1 functionDomainTerminusProteinDeletion
2020
Lamellar cells in Pacinian and Meissner corpuscles are touch sensors
Nikolaev YA, Feketa VV, Anderson EO, Schneider ER, Gracheva EO, Bagriantsev SN. Lamellar cells in Pacinian and Meissner corpuscles are touch sensors. Science Advances 2020, 6: eabe6393. PMID: 33328243, PMCID: PMC7744075, DOI: 10.1126/sciadv.abe6393.Peer-Reviewed Original ResearchLamellar cellsR-type voltage-gated calcium channelsMeissner corpusclesAction potentialsChannel-dependent action potentialsPacinian corpusclesVoltage-gated calcium channelsSensory afferent neuronsNon-neuronal cellsBill skinAfferent neuronsNeuronal afferentsCalcium channelsElectrophysiological recordingsTactile stimuliCorpusclesIon channelsCellsSkinFirst evidenceTactile organsAfferentsNeuronsCNGA3 acts as a cold sensor in hypothalamic neurons
Feketa VV, Nikolaev YA, Merriman DK, Bagriantsev SN, Gracheva EO. CNGA3 acts as a cold sensor in hypothalamic neurons. ELife 2020, 9: e55370. PMID: 32270761, PMCID: PMC7182431, DOI: 10.7554/elife.55370.Peer-Reviewed Original ResearchPiezo2 Integrates Mechanical and Thermal Cues in Vertebrate Mechanoreceptors
Nikolaev Y, Zheng W, Gracheva E, Bagriantsev S. Piezo2 Integrates Mechanical and Thermal Cues in Vertebrate Mechanoreceptors. Biophysical Journal 2020, 118: 396a. DOI: 10.1016/j.bpj.2019.11.2254.Peer-Reviewed Original ResearchMammalian TRP Ion Channels are Insensitive to Membrane Stretch
Nikolaev Y, Cox C, Ridone P, Rohde P, Cordero-Morales J, Vasquez V, Laver D, Martinac B. Mammalian TRP Ion Channels are Insensitive to Membrane Stretch. Biophysical Journal 2020, 118: 22a. DOI: 10.1016/j.bpj.2019.11.299.Peer-Reviewed Original ResearchChapter Three Cell membrane mechanics and mechanosensory transduction
Martinac B, Nikolaev Y, Silvani G, Bavi N, Romanov V, Nakayama Y, Martinac A, Rohde P, Bavi O, Cox C. Chapter Three Cell membrane mechanics and mechanosensory transduction. Current Topics In Membranes 2020, 86: 83-141. PMID: 33837699, DOI: 10.1016/bs.ctm.2020.08.002.Peer-Reviewed Original ResearchConceptsCell mechanicsCell membrane mechanicsMechanosensitive ion channelsGene expressionIntracellular signalsMechanosensory transductionMolecular transducersIon channelsMechanical stimuliMembrane mechanicsCurrent knowledgeMechanical forcesMillisecond timescaleStimuli actCellsTransductionRapid progressNew toolMechanobiologyBiological cellsBetter understandingPathwayExpression
2019
Mammalian TRP ion channels are insensitive to membrane stretch
Nikolaev YA, Cox CD, Ridone P, Rohde PR, Cordero-Morales JF, Vásquez V, Laver DR, Martinac B. Mammalian TRP ion channels are insensitive to membrane stretch. Journal Of Cell Science 2019, 132: jcs238360. PMID: 31722978, PMCID: PMC6918743, DOI: 10.1242/jcs.238360.Peer-Reviewed Original ResearchConceptsTRP channelsTouch-insensitive mutantsMembrane stretchIon channelsTRP ion channel familyIon channel familyTransient receptor potential (TRP) ion channelsTRP ion channelsMammalian subfamiliesMammalian membersPotential ion channelsArtificial bilayer systemInsensitive mutantsCytoplasmic tethersDownstream componentsMechanosensory processesSignaling cascadesChannel familyCellular componentsBlood pressure regulationCell membraneCerebrospinal fluid flowMechanical forcesStretch activationPressure regulation