Featured Publications
An optogenetic-phosphoproteomic study reveals dynamic Akt1 signaling profiles in endothelial cells
Zhou W, Li W, Wang S, Salovska B, Hu Z, Tao B, Di Y, Punyamurtula U, Turk B, Sessa W, Liu Y. An optogenetic-phosphoproteomic study reveals dynamic Akt1 signaling profiles in endothelial cells. Nature Communications 2023, 14: 3803. PMID: 37365174, PMCID: PMC10293293, DOI: 10.1038/s41467-023-39514-1.Peer-Reviewed Original ResearchConceptsPhosphorylation sitesSerine/threonine kinase AktMass spectrometry-based phosphoproteomicsThreonine kinase AktAkt-dependent phosphorylationAberrant Akt activationEndothelial cellsKinase substrateKinase AktCell signalingPhosphorylation profilePhenotypic outcomesDownstream signalingAkt activationAkt1 phosphorylationHuman diseasesSystem-level analysisAKT1Vascular endothelial cellsRich resourcePhosphorylationSignalingGrowth factorAktCellsGlobal and Site-Specific Effect of Phosphorylation on Protein Turnover
Wu C, Ba Q, Lu D, Li W, Salovska B, Hou P, Mueller T, Rosenberger G, Gao E, Di Y, Zhou H, Fornasiero EF, Liu Y. Global and Site-Specific Effect of Phosphorylation on Protein Turnover. Developmental Cell 2020, 56: 111-124.e6. PMID: 33238149, PMCID: PMC7855865, DOI: 10.1016/j.devcel.2020.10.025.Peer-Reviewed Original ResearchConceptsProtein turnoverProtein lifetimeCyclin-dependent kinase substrateStable isotope-labeled amino acidsSite-specific phosphorylationPulse-labeling approachIsotope-labeled amino acidsMass spectrometry-based methodCell fitnessKinase substratePhosphorylation sitesPhosphorylated sitesProteomic methodsCell signalingSpectrometry-based methodsLive cellsAmino acidsPhosphositesRich resourceDisease biologyLabeling approachPhosphorylationModification typesGlutamic acidTurnover
2024
PTMoreR-enabled cross-species PTM mapping and comparative phosphoproteomics across mammals
Wang S, Di Y, Yang Y, Salovska B, Li W, Hu L, Yin J, Shao W, Zhou D, Cheng J, Liu D, Yang H, Liu Y. PTMoreR-enabled cross-species PTM mapping and comparative phosphoproteomics across mammals. Cell Reports Methods 2024, 4: 100859. PMID: 39255793, PMCID: PMC11440062, DOI: 10.1016/j.crmeth.2024.100859.Peer-Reviewed Original ResearchConceptsP-siteSurrounding amino acid sequenceKinase-substrate networkQuantitative phosphoproteomic analysisFunctional enrichment analysisPhosphoproteomic resultsKinase motifsComparative phosphoproteomicsPTM sitesPhosphorylation eventsPhosphoproteomic analysisProteomic analysisEnrichment analysisMammalian speciesSpeciesEvolutionary anglePhosphoproteomeMotifEnvironmental factorsNon-human speciesPTMProteomicsKinaseMammalsProteinNetwork-based elucidation of colon cancer drug resistance mechanisms by phosphoproteomic time-series analysis
Rosenberger G, Li W, Turunen M, He J, Subramaniam P, Pampou S, Griffin A, Karan C, Kerwin P, Murray D, Honig B, Liu Y, Califano A. Network-based elucidation of colon cancer drug resistance mechanisms by phosphoproteomic time-series analysis. Nature Communications 2024, 15: 3909. PMID: 38724493, PMCID: PMC11082183, DOI: 10.1038/s41467-024-47957-3.Peer-Reviewed Original ResearchConceptsMechanism of cell responseResistance mechanismsSignaling pathway responsesDrug resistance mechanismsEnzyme/substrate interactionsAdaptive resistance mechanismsNetwork rewiringPhosphorylation stateSignaling pathway activationDrug perturbationsProteomic technologiesSignaling crosstalkPathway responsesInhibitor designPathway activationCancer drug resistance mechanismsCell adaptive responsesAdaptive responsePhosphatase activityNetwork-based methodologyRewiringTherapeutic efficacyPhosphoproteome coverageCell responsesControl mediumEGFR targeting PhosTACs as a dual inhibitory approach reveals differential downstream signaling
Hu Z, Chen P, Li W, Krone M, Zheng S, Saarbach J, Velasco I, Hines J, Liu Y, Crews C. EGFR targeting PhosTACs as a dual inhibitory approach reveals differential downstream signaling. Science Advances 2024, 10: eadj7251. PMID: 38536914, PMCID: PMC10971414, DOI: 10.1126/sciadv.adj7251.Peer-Reviewed Original ResearchMeSH KeywordsApoptosisCell Line, TumorErbB ReceptorsHumansPhosphorylationProteolysis Targeting ChimeraSignal TransductionTyrosineConceptsInhibit cancer cell viabilityProteome-wide levelCancer cell viabilityDifferential signaling pathwaysPhosphoproteomic approachTyrosine dephosphorylationProtein dephosphorylationSignal transductionActivating dephosphorylationInduce apoptosisReceptor tyrosine kinase inhibitorsRTK activationSignaling pathwayInhibition of kinasesDephosphorylationEpidermal growth factor receptorGrowth factor receptorCell viabilityFactor receptorInhibitory approachesTyrosineTyrosine kinase inhibitorsInhibitory effectInhibitory potentialKinase inhibitors
2022
Toward a hypothesis‐free understanding of how phosphorylation dynamically impacts protein turnover
Li W, Salovska B, Fornasiero E, Liu Y. Toward a hypothesis‐free understanding of how phosphorylation dynamically impacts protein turnover. Proteomics 2022, 23: e2100387. PMID: 36422574, PMCID: PMC10964180, DOI: 10.1002/pmic.202100387.Peer-Reviewed Original ResearchMeSH KeywordsIsotope LabelingMass SpectrometryPhosphorylationProtein Processing, Post-TranslationalProteolysisProteomeConceptsPost-translational modificationsProtein turnoverDynamic stable isotope labelingCell starvationStable isotope labelingData-independent acquisition mass spectrometryAcquisition mass spectrometryProteome levelTurnover diversityPhosphoproteomic datasetsPhosphorylation stoichiometryMetabolic labelingIsotope labelingMass spectrometryPhosphorylationAmino acidsCell culturesBiological perspectiveStarvationTurnoverTurnover measurementsRecent studiesSILACProteoformsPeptidoforms
2020
Multi-in-One: Multiple-Proteases, One-Hour-Shot Strategy for Fast and High-Coverage Phosphoproteomic Investigation
Gao X, Li Q, Liu Y, Zeng R. Multi-in-One: Multiple-Proteases, One-Hour-Shot Strategy for Fast and High-Coverage Phosphoproteomic Investigation. Analytical Chemistry 2020, 92: 8943-8951. PMID: 32479063, DOI: 10.1021/acs.analchem.0c00906.Peer-Reviewed Original Research
2017
Protein kinase D at the Golgi controls NLRP3 inflammasome activation
Zhang Z, Meszaros G, He WT, Xu Y, de Fatima Magliarelli H, Mailly L, Mihlan M, Liu Y, Gámez M, Goginashvili A, Pasquier A, Bielska O, Neven B, Quartier P, Aebersold R, Baumert TF, Georgel P, Han J, Ricci R. Protein kinase D at the Golgi controls NLRP3 inflammasome activation. Journal Of Experimental Medicine 2017, 214: 2671-2693. PMID: 28716882, PMCID: PMC5584123, DOI: 10.1084/jem.20162040.Peer-Reviewed Original Research