2024
Augmenting biomedical named entity recognition with general-domain resources
Yin Y, Kim H, Xiao X, Wei C, Kang J, Lu Z, Xu H, Fang M, Chen Q. Augmenting biomedical named entity recognition with general-domain resources. Journal Of Biomedical Informatics 2024, 104731. PMID: 39368529, DOI: 10.1016/j.jbi.2024.104731.Peer-Reviewed Original ResearchBioNER datasetsMulti-task learningNER datasetsEntity typesBiomedical datasetsBaseline modelGeneral domain datasetsBiomedical language modelNeural network-basedYield performance improvementsBioNER modelsEntity recognitionBiomedical corporaHuman annotatorsLabel ambiguityLanguage modelTransfer learningF1 scoreBioNERHuman effortNetwork-basedBiomedical resourcesPerformance improvementDatasetSuperior performanceAdvancing entity recognition in biomedicine via instruction tuning of large language models
Keloth V, Hu Y, Xie Q, Peng X, Wang Y, Zheng A, Selek M, Raja K, Wei C, Jin Q, Lu Z, Chen Q, Xu H. Advancing entity recognition in biomedicine via instruction tuning of large language models. Bioinformatics 2024, 40: btae163. PMID: 38514400, PMCID: PMC11001490, DOI: 10.1093/bioinformatics/btae163.Peer-Reviewed Original ResearchNamed Entity RecognitionSequence labeling taskNatural language processingBiomedical NER datasetsLanguage modelNER datasetsEntity recognitionLabeling taskText generationField of natural language processingBiomedical NERFew-shot learning capabilityReasoning tasksMulti-domain scenariosDomain-specific modelsEnd-to-endMinimal fine-tuningSOTA performanceF1 scoreHealthcare applicationsBiomedical entitiesBiomedical domainLanguage processingMulti-taskingPubMedBERT modelImproving large language models for clinical named entity recognition via prompt engineering
Hu Y, Chen Q, Du J, Peng X, Keloth V, Zuo X, Zhou Y, Li Z, Jiang X, Lu Z, Roberts K, Xu H. Improving large language models for clinical named entity recognition via prompt engineering. Journal Of The American Medical Informatics Association 2024, 31: 1812-1820. PMID: 38281112, PMCID: PMC11339492, DOI: 10.1093/jamia/ocad259.Peer-Reviewed Original ResearchClinical NER tasksNER taskTask-specific promptsEntity recognitionLanguage modelTraining samplesState-of-the-art modelsFew-shot learningState-of-the-artMinimal training dataTask-specific knowledgeF1-socreAnnotated samplesConcept extractionModel performanceAnnotated datasetsTraining dataF1 scoreTask descriptionFormat specificationsComplex clinical dataOptimal performanceTaskEvaluation schemaGPT model
2023
AIONER: all-in-one scheme-based biomedical named entity recognition using deep learning
Luo L, Wei C, Lai P, Leaman R, Chen Q, Lu Z. AIONER: all-in-one scheme-based biomedical named entity recognition using deep learning. Bioinformatics 2023, 39: btad310. PMID: 37171899, PMCID: PMC10212279, DOI: 10.1093/bioinformatics/btad310.Peer-Reviewed Original ResearchConceptsDeep learningEntity recognitionTraining dataEntity typesLabeling training dataNatural language textText mining tasksSignificant domain expertiseMulti-task learningMining tasksInformation extractionBioNER taskDomain expertiseBiomedical entitiesIndependent tasksSource codeBenchmark tasksLanguage textBiomedical textArt approachesAccurate annotationExternal dataData scarcityTaskLearning
2021
Artificial Intelligence in Action: Addressing the COVID-19 Pandemic with Natural Language Processing
Chen Q, Leaman R, Allot A, Luo L, Wei C, Yan S, Lu Z. Artificial Intelligence in Action: Addressing the COVID-19 Pandemic with Natural Language Processing. Annual Review Of Biomedical Data Science 2021, 4: 1-27. PMID: 34465169, DOI: 10.1146/annurev-biodatasci-021821-061045.Peer-Reviewed Original ResearchConceptsNatural language processingArtificial intelligenceLanguage processingInformation needsLiterature-based discoveryInformation retrievalEntity recognitionMisinformation detectionInformation overloadNLP studiesNLP tasksEmotion analysisTopic modelingCOVID-19 pandemicIntelligenceAdditional tasksHuman languagePublic health measuresTaskHealth measuresProcessingSerious health effectsHealth effectsRetrievalDataset