2023
SLC26A1 is a major determinant of sulfate homeostasis in humans
Pfau A, López-Cayuqueo K, Scherer N, Wuttke M, Wernstedt A, Fassrainer D, Smith D, van de Kamp J, Ziegeler K, Eckardt K, Luft F, Aronson P, Köttgen A, Jentsch T, Knauf F. SLC26A1 is a major determinant of sulfate homeostasis in humans. Journal Of Clinical Investigation 2023, 133: e161849. PMID: 36719378, PMCID: PMC9888379, DOI: 10.1172/jci161849.Peer-Reviewed Original ResearchConceptsSulfate homeostasisIntervertebral disc disordersWhole-exome sequencingMajor determinantBack painPatient presentingMusculoskeletal healthDisc disordersPlasma sulfateSulfate reabsorptionFunctional expression assaysCartilage healthHomozygous mutationPotential targetPopulation studiesNumerous physiological processesRecent evidenceExome analysisHomeostasisHyposulfatemiaExpression assaysPivotal roleClinical geneticsAdditional variantsHumans
2021
Deletion of Cdh16 Ksp-cadherin leads to a developmental delay in the ability to maximally concentrate urine in mouse
Thomson R, Dynia DW, Burlein S, Thomson BR, Booth C, Knauf F, Wang T, Aronson P. Deletion of Cdh16 Ksp-cadherin leads to a developmental delay in the ability to maximally concentrate urine in mouse. American Journal Of Physiology. Renal Physiology 2021, 320: f1106-f1122. PMID: 33938239, PMCID: PMC8285649, DOI: 10.1152/ajprenal.00556.2020.Peer-Reviewed Original ResearchConceptsKsp-cadherinCell adhesion moleculeAtypical memberKidney developmentMammalian kidneyAdult mammalian kidneyBasolateral membraneNormal kidney developmentEpithelial cellsAdhesion moleculesMutant animalsExpression analysisSpecific expressionE-cadherin expressionWestern blot analysisEpithelial phenotypePrincipal proteinE-cadherinBlot analysisMouse linesAquaporin-2CadherinCritical roleDevelopmental delayKnockout mice
2020
Enteric Oxalate Secretion Mediated by Slc26a6 Defends against Hyperoxalemia in Murine Models of Chronic Kidney Disease
Neumeier LI, Thomson RB, Reichel M, Eckardt KU, Aronson PS, Knauf F. Enteric Oxalate Secretion Mediated by Slc26a6 Defends against Hyperoxalemia in Murine Models of Chronic Kidney Disease. Journal Of The American Society Of Nephrology 2020, 31: 1987-1995. PMID: 32660969, PMCID: PMC7461683, DOI: 10.1681/asn.2020010105.Peer-Reviewed Original ResearchConceptsEnteric oxalate secretionPlasma oxalate concentrationOxalate secretionModel of CKDChronic kidney diseaseIntestine of miceWild-type miceHealthy kidney functionOxalate clearanceWestern blot analysisKidney injuryKidney functionOxalate excretionWeekly injectionsKidney diseaseCKD modelExtrarenal clearanceOxalate transporter SLC26A6CKDMurine modelSignificant elevationOxalate homeostasisTransporter expressionMiceProtein expression
2016
N-glycosylation critically regulates function of oxalate transporter SLC26A6
Thomson RB, Thomson CL, Aronson PS. N-glycosylation critically regulates function of oxalate transporter SLC26A6. American Journal Of Physiology - Cell Physiology 2016, 311: c866-c873. PMID: 27681177, PMCID: PMC5206297, DOI: 10.1152/ajpcell.00171.2016.Peer-Reviewed Original ResearchConceptsPlasma membraneIntegral membrane proteinsCell surface deliverySLC26A6 functionTissue-specific differencesGlycosylation mutantsMembrane proteinsN-glycosylationSurface deliveryBiotinylation studiesOxalate transporterOxalate homeostasisSecond extracellular loopExtracellular loopIntact cellsEnzymatic deglycosylation studiesTransport activityEnzymatic deglycosylationFunctional studiesDeglycosylation studiesGlycosylationPutative second extracellular loopTransport functionFunctional significanceEssential roleOxalate, inflammasome, and progression of kidney disease
Ermer T, Eckardt KU, Aronson PS, Knauf F. Oxalate, inflammasome, and progression of kidney disease. Current Opinion In Nephrology & Hypertension 2016, 25: 363-371. PMID: 27191349, PMCID: PMC4891250, DOI: 10.1097/mnh.0000000000000229.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsChronic kidney diseaseProgressive renal failureRenal inflammationRenal failurePlasma oxalateKidney diseaseInflammasome activationElevated plasma oxalate levelsNOD-like receptor familyProgressive renal damageGlomerular filtration rateMore rapid progressionWarrants clinical trialsPlasma oxalate levelsRenal damageEnteric hyperoxaluriaMacrophage infiltrationIL-1βFiltration rateClinical trialsRapid progressionInflammasome proteinsMice protectsUrinary oxalatePyrin domainLoss of Cystic Fibrosis Transmembrane Regulator Impairs Intestinal Oxalate Secretion
Knauf F, Thomson RB, Heneghan JF, Jiang Z, Adebamiro A, Thomson CL, Barone C, Asplin JR, Egan ME, Alper SL, Aronson PS. Loss of Cystic Fibrosis Transmembrane Regulator Impairs Intestinal Oxalate Secretion. Journal Of The American Society Of Nephrology 2016, 28: 242-249. PMID: 27313231, PMCID: PMC5198290, DOI: 10.1681/asn.2016030279.Peer-Reviewed Original ResearchConceptsIntestinal oxalate secretionWild-type miceCystic fibrosisIntestinal tissueOxalate secretionIncidence of hyperoxaluriaCalcium oxalate stone formationNet intestinal absorptionOxalate stone formationCoexpression of CFTRIntestinal transport processesWestern blot analysisOxalate absorptionMouse modelIntestinal absorptionGlucose absorptionUssing chambersStone formationFibrosisMiceSecretionReduced expressionCystic fibrosis transmembrane conductance regulator (CFTR) geneHyperoxaluriaPatientsOxalate-induced chronic kidney disease with its uremic and cardiovascular complications in C57BL/6 mice
Mulay SR, Eberhard JN, Pfann V, Marschner JA, Darisipudi MN, Daniel C, Romoli S, Desai J, Grigorescu M, Kumar SV, Rathkolb B, Wolf E, Hrabě de Angelis M, Bäuerle T, Dietel B, Wagner CA, Amann K, Eckardt KU, Aronson PS, Anders HJ, Knauf F. Oxalate-induced chronic kidney disease with its uremic and cardiovascular complications in C57BL/6 mice. American Journal Of Physiology. Renal Physiology 2016, 310: f785-f795. PMID: 26764204, PMCID: PMC5504458, DOI: 10.1152/ajprenal.00488.2015.Peer-Reviewed Original ResearchConceptsC57BL/6 miceChronic kidney disease researchOxalate-rich dietChronic kidney diseaseFemale C57BL/6 miceArterial hypertensionCardiovascular complicationsKidney disease researchAtubular glomeruliInterstitial inflammationRenal histologyTubular damageKidney diseaseCardiac fibrosisMetabolic acidosisNormochromic anemiaTissue involvementHistological changesHuman CKDCKDExperimental animalsComplicationsInducible modelControl dietFibrosis
2014
Cyclic GMP Kinase II (cGKII) Inhibits NHE3 by Altering Its Trafficking and Phosphorylating NHE3 at Three Required Sites IDENTIFICATION OF A MULTIFUNCTIONAL PHOSPHORYLATION SITE*
Chen T, Kocinsky HS, Cha B, Murtazina R, Yang J, Tse CM, Singh V, Cole R, Aronson PS, de Jonge H, Sarker R, Donowitz M. Cyclic GMP Kinase II (cGKII) Inhibits NHE3 by Altering Its Trafficking and Phosphorylating NHE3 at Three Required Sites IDENTIFICATION OF A MULTIFUNCTIONAL PHOSPHORYLATION SITE*. Journal Of Biological Chemistry 2014, 290: 1952-1965. PMID: 25480791, PMCID: PMC4303652, DOI: 10.1074/jbc.m114.590174.Peer-Reviewed Original ResearchAnimalsBinding SitesCaco-2 CellsCell MembraneCyclic GMP-Dependent Protein Kinase Type IIDexamethasoneHumansIntestinal MucosaMass SpectrometryMiceMicrovilliMutagenesisPhosphorylationProtein Structure, TertiaryProtein TransportSerineSodium-Hydrogen Exchanger 3Sodium-Hydrogen ExchangersSurface PropertiesTransfection
2013
Overexpression of Pendrin in Intercalated Cells Produces Chloride-Sensitive Hypertension
Jacques T, Picard N, Miller RL, Riemondy KA, Houillier P, Sohet F, Ramakrishnan SK, Büsst CJ, Jayat M, Cornière N, Hassan H, Aronson PS, Hennings JC, Hübner CA, Nelson RD, Chambrey R, Eladari D. Overexpression of Pendrin in Intercalated Cells Produces Chloride-Sensitive Hypertension. Journal Of The American Society Of Nephrology 2013, 24: 1104-1113. PMID: 23766534, PMCID: PMC3699825, DOI: 10.1681/asn.2012080787.Peer-Reviewed Original ResearchConceptsDistal nephronTransgenic miceSame sodium intakeHigh salt intakeCause of hypertensionHigh-salt dietSodium-driven chloride/bicarbonate exchangerNet NaCl absorptionArterial hypertensionSalt intakeSodium intakeEpithelial sodium channel ENaCPathogenic roleNormal miceHypertensionRenal absorptionExchanger pendrinPrimary abnormalityVascular volumeAppropriate downregulationIntercalated cellsChloride absorptionSodium channel ENaCActivity of transportersPrimary activationNALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy
Knauf F, Asplin JR, Granja I, Schmidt IM, Moeckel GW, David RJ, Flavell RA, Aronson PS. NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney International 2013, 84: 895-901. PMID: 23739234, PMCID: PMC3772982, DOI: 10.1038/ki.2013.207.Peer-Reviewed Original ResearchConceptsProgressive renal failureRenal failureCalcium oxalate crystal depositionCrystal-associated diseasesOverproduction of oxalateWild-type miceHigh-oxalate dietNephropathy resultsOxalate nephropathyRenal histologyKidney diseaseOxalate dietInflammatory responseNALP3 expressionDietary oxalateIntestinal oxalateOxalate homeostasisSoluble oxalateNephropathyCrystal depositionMiceMultiple disordersNALP3DietInflammationEzrin Is Required for the Functional Regulation of the Epithelial Sodium Proton Exchanger, NHE3
Hayashi H, Tamura A, Krishnan D, Tsukita S, Suzuki Y, Kocinsky HS, Aronson PS, Orlowski J, Grinstein S, Alexander RT. Ezrin Is Required for the Functional Regulation of the Epithelial Sodium Proton Exchanger, NHE3. PLOS ONE 2013, 8: e55623. PMID: 23405179, PMCID: PMC3566197, DOI: 10.1371/journal.pone.0055623.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonAnimalsColonCyclic AMPCytoskeletal ProteinsDogsEpithelial CellsFluorescence Recovery After PhotobleachingHumansMadin Darby Canine Kidney CellsMaleMembrane ProteinsMiceMice, KnockoutMicrofilament ProteinsMicrovilliOctoxynolPhosphorylationProtein TransportRNA, Small InterferingSodiumSodium-Hydrogen Exchanger 3Sodium-Hydrogen ExchangersConceptsApical actin cytoskeletonNHE3 activitySodium hydrogen exchanger isoform 3CAMP-dependent inhibitionEzrin knockdown miceERM proteinsActin cytoskeletonSodium-proton exchangerApical cytoskeletonApical localizationFunctional regulationWild-type animalsEpithelial cell culture modelEzrinProton exchangersFluorescent recoveryEpithelial phenotypeCytoskeletonMolecular determinantsCell culture modelExchanger isoform 3Functional studiesNon-targeting siRNAApical membraneIsoform 3
2012
Urinary Metabolic Phenotyping the slc26a6 (Chloride–Oxalate Exchanger) Null Mouse Model
Garcia-Perez I, Villaseñor A, Wijeyesekera A, Posma JM, Jiang Z, Stamler J, Aronson P, Unwin R, Barbas C, Elliott P, Nicholson J, Holmes E. Urinary Metabolic Phenotyping the slc26a6 (Chloride–Oxalate Exchanger) Null Mouse Model. Journal Of Proteome Research 2012, 11: 4425-4435. PMID: 22594923, PMCID: PMC4028149, DOI: 10.1021/pr2012544.Peer-Reviewed Original ResearchConceptsRenal stone diseaseStone diseaseNull miceUrinary metabolic signaturesBlood pressure controlWild-type miceNull mouse modelRenal stone formationRenal proximal tubulesUrinary metabolicUrinary metabolomeClear metabolic differentiationSodium homeostasisRenal stonesType miceMouse modelUrinary metabolitesOxalate balanceUrinary profilesProximal tubulesPressure controlStone formationExchanger SLC26A6Metabolic signaturesPathological processesSat1 is dispensable for active oxalate secretion in mouse duodenum
Ko N, Knauf F, Jiang Z, Markovich D, Aronson PS. Sat1 is dispensable for active oxalate secretion in mouse duodenum. American Journal Of Physiology - Cell Physiology 2012, 303: c52-c57. PMID: 22517357, PMCID: PMC3404526, DOI: 10.1152/ajpcell.00385.2011.Peer-Reviewed Original ResearchConceptsCalcium oxalate stonesMouse duodenumOxalate secretionOxalate stonesIntestinal oxalate secretionIntestinal oxalate transportSecretory fluxSAT1 expressionDisulfonic stilbene DIDSDuodenumTransporter 1SecretionMiceHyperoxalemiaBasolateral solutionHyperoxaluriaBasolateral transportersBicarbonate productionOxalate transportBasolateral membraneSAT1Apical membraneComplete removalMedium concentration
2011
Net Intestinal Transport of Oxalate Reflects Passive Absorption and SLC26A6-mediated Secretion
Knauf F, Ko N, Jiang Z, Robertson WG, Van Itallie CM, Anderson JM, Aronson PS. Net Intestinal Transport of Oxalate Reflects Passive Absorption and SLC26A6-mediated Secretion. Journal Of The American Society Of Nephrology 2011, 22: 2247-2255. PMID: 22021714, PMCID: PMC3250206, DOI: 10.1681/asn.2011040433.Peer-Reviewed Original Research
2010
The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice
Leviel F, Hübner CA, Houillier P, Morla L, Moghrabi S, Brideau G, Hatim H, Parker MD, Kurth I, Kougioumtzes A, Sinning A, Pech V, Riemondy KA, Miller RL, Hummler E, Shull GE, Aronson PS, Doucet A, Wall SM, Chambrey R, Eladari D. The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. Journal Of Clinical Investigation 2010, 120: 1627-1635. PMID: 20389022, PMCID: PMC2860930, DOI: 10.1172/jci40145.Peer-Reviewed Original ResearchConceptsNa-Cl cotransporterSodium transportMaintenance of euvolemiaTransepithelial NaCl absorptionDucts of miceEpithelial sodium channelIntravascular volumeIndependent Cl-/HCO3Sodium balanceMouse CCDAmiloride-sensitive epithelial sodium channelSodium absorptionExcretion resultsFluid homeostasisGenetic ablationNaCl absorptionSodium channelsMiceCl-/HCO3NaCl transportSlc4a8Genetic disruptionNovel roleHydrochlorothiazideDuctRole of SLC26A6-mediated Cl⁻-oxalate exchange in renal physiology and pathophysiology.
Aronson PS. Role of SLC26A6-mediated Cl⁻-oxalate exchange in renal physiology and pathophysiology. Journal Of Nephrology 2010, 23 Suppl 16: s158-64. PMID: 21170874.Commentaries, Editorials and LettersConceptsNull miceCalcium oxalate urolithiasisProximal tubule cellsStone riskAnimal modelsOxalate urolithiasisProximal tubulesOxalate homeostasisTubule cellsApical membrane ClHyperoxaluriaRenal physiologyOxalate exchangeMiceExchange activitySubsequent studiesAnion transportersPossible mechanismHyperoxalemiaPatientsPathophysiologyUrolithiasisStriking phenotypeReabsorption
2009
Prestin's Anion Transport and Voltage-Sensing Capabilities Are Independent
Bai JP, Surguchev A, Montoya S, Aronson PS, Santos-Sacchi J, Navaratnam D. Prestin's Anion Transport and Voltage-Sensing Capabilities Are Independent. Biophysical Journal 2009, 96: 3179-3186. PMID: 19383462, PMCID: PMC2718310, DOI: 10.1016/j.bpj.2008.12.3948.Peer-Reviewed Original ResearchMeSH Keywords4,4'-Diisothiocyanostilbene-2,2'-Disulfonic AcidAnalysis of VarianceAnimalsAnion Transport ProteinsAntiportersCarbon RadioisotopesChloridesCHO CellsCricetinaeCricetulusElectric CapacitanceFormatesGerbillinaeIon TransportMiceMutation, MissenseOxalatesPatch-Clamp TechniquesSalicylatesSulfate TransportersConceptsClosest phylogenetic relativesTransmembrane regionSLC26 anion transporter familyMammalian outer hair cellsMembrane protein prestinPrestin's motor functionAnion transportPhylogenetic relativesAnion transporter familyTransporter familyProtein prestinChloride-binding siteGating charge movementPrestinCharge movementHair cellsOuter hair cellsResiduesMechanistic conceptsVoltage sensingTransport capabilityCellsVoltage sensorPrevious observationsUptake studies
2006
Regulation of anion exchanger Slc26a6 by protein kinase C
Hassan HA, Mentone S, Karniski LP, Rajendran VM, Aronson PS. Regulation of anion exchanger Slc26a6 by protein kinase C. American Journal Of Physiology - Cell Physiology 2006, 292: c1485-c1492. PMID: 17151144, DOI: 10.1152/ajpcell.00447.2006.Peer-Reviewed Original ResearchMeSH KeywordsAcetophenonesAnimalsAnion Transport ProteinsAntiportersBenzopyransBiological Transport, ActiveCarbazolesCell MembraneChloridesCytoplasmEnzyme ActivationFemaleFormatesIn Vitro TechniquesIndolesMaleimidesMiceOocytesOxalatesProtein Kinase C-deltaProtein TransportSulfate TransportersTetradecanoylphorbol AcetateXenopusConceptsPKC activationOxalate secretionIntestinal oxalate secretionFormate exchangeRenal proximal tubulesAnion exchanger pendrinPancreatic ductExchanger pendrinProximal tubulesSmall intestineSLC26A6 expressionNaCl reabsorptionCalcium independentSimilar extentPotential rolePKC-delta activationProtein kinase CActivationSecretionSlc26a6Immunofluorescence microscopyXenopus oocytesPMAPhysiological significanceOocyte plasma membraneEssential roles of CFEX-mediated Cl−–oxalate exchange in proximal tubule NaCl transport and prevention of urolithiasis
Aronson PS. Essential roles of CFEX-mediated Cl−–oxalate exchange in proximal tubule NaCl transport and prevention of urolithiasis. Kidney International 2006, 70: 1207-1213. PMID: 16883319, DOI: 10.1038/sj.ki.5001741.Commentaries, Editorials and LettersAnimalsAntiportersCalcium OxalateChloride-Bicarbonate AntiportersChloridesDisease Models, AnimalFormatesHomeostasisHumansHyperoxaluriaImmunohistochemistryIntestinal AbsorptionIon ExchangeKidney Tubules, ProximalMiceMice, KnockoutModels, BiologicalNephrolithiasisOocytesOxalatesSodium ChlorideSulfate TransportersXenopusPendrin Regulation in Mouse Kidney Primarily Is Chloride-Dependent
Vallet M, Picard N, Loffing-Cueni D, Fysekidis M, Bloch-Faure M, Deschênes G, Breton S, Meneton P, Loffing J, Aronson PS, Chambrey R, Eladari D. Pendrin Regulation in Mouse Kidney Primarily Is Chloride-Dependent. Journal Of The American Society Of Nephrology 2006, 17: 2153-2163. PMID: 16825334, DOI: 10.1681/asn.2005101054.Peer-Reviewed Original ResearchConceptsHydrochlorothiazide administrationAldosterone secretionExtracellular fluid volume regulationElevated plasma aldosterone levelsPlasma aldosterone levelsDifferent mouse modelsFluid volume regulationPendrin protein expressionAldosterone levelsSecondary hyperaldosteronismEpithelial sodium channelChloride transportApical Cl-/HCO3Chloride reabsorptionRat modelPendrin expressionMouse modelKnockout miceSemiquantitative immunoblottingNaCl loadingGamma-ENaC subunitsBiologic effectsExperimental modelSodium channelsProtein expression