2023
Continuous positive airway pressure (CPAP) increases CSF flow and glymphatic transport
Ozturk B, Koundal S, Al Bizri E, Chen X, Gursky Z, Dai F, Lim A, Heerdt P, Kipnis J, Tannenbaum A, Lee H, Benveniste H. Continuous positive airway pressure (CPAP) increases CSF flow and glymphatic transport. JCI Insight 2023, 8: e170270. PMID: 37159262, PMCID: PMC10371231, DOI: 10.1172/jci.insight.170270.Peer-Reviewed Original ResearchConceptsContinuous positive airway pressurePositive airway pressureGlymphatic transportAirway pressureIntracranial pressureEnd-expiratory lung volumeCSF bulk flowCerebrospinal fluid flowArterial oxygenationUpper airwayLung volumeCPAP deviceRespiratory functionClearance functionTherapeutic benefitSkull baseAnesthetized rodentsCSF flowFluid homeostasisPhysiological testingLymphatic systemFunctional crosstalkClinical devicesAirwayRats
2020
The glymphatic system and its role in cerebral homeostasis
Benveniste H, Elkin R, Heerdt P, Koundal S, Xue Y, Lee H, Wardlaw J, Tannenbaum A. The glymphatic system and its role in cerebral homeostasis. Journal Of Applied Physiology 2020, 129: 1330-1340. PMID: 33002383, PMCID: PMC7792843, DOI: 10.1152/japplphysiol.00852.2019.Peer-Reviewed Original Research
2019
Glymphatic System Function in Relation to Anesthesia and Sleep States
Benveniste H, Heerdt PM, Fontes M, Rothman DL, Volkow ND. Glymphatic System Function in Relation to Anesthesia and Sleep States. Anesthesia & Analgesia 2019, 128: 747-758. PMID: 30883420, DOI: 10.1213/ane.0000000000004069.Peer-Reviewed Original ResearchConceptsEye movement sleepGlymphatic systemMovement sleepNon-rapid eye movement sleepRapid eye movement (REM) sleepTight blood-brain barrierCentral nervous system tissueCerebral oxygen consumptionCritical care settingBlood-brain barrierGlymphatic system functionCentral nervous systemNervous system tissueCerebrospinal fluid flowAnesthetic regimensBrain glymphatic systemBrain parenchymaCognitive dysfunctionCare settingsNervous systemClinical explorationWaste clearanceWakefulness persistLymphatic systemKey anatomical components
2008
Activation of brain protein phosphatase‐1I following cardiac arrest and resuscitation involving an interaction with 14‐3‐3γ
Platholi J, Heerdt PM, Tung H, Hemmings HC. Activation of brain protein phosphatase‐1I following cardiac arrest and resuscitation involving an interaction with 14‐3‐3γ. Journal Of Neurochemistry 2008, 105: 2029-2038. PMID: 18284617, PMCID: PMC3872065, DOI: 10.1111/j.1471-4159.2008.05300.x.Peer-Reviewed Original ResearchConceptsGlobal cerebral ischemiaCerebral ischemiaCardiac arrestTransient global cerebral ischemiaTransient cerebral ischemiaPotential therapeutic targetRelevant pig modelIschemic brainNeuroprotective mechanismsControl brainsInhibitory modulatorTherapeutic targetPig modelIschemiaPig brainBrain proteinsMechanism-based approachBrainProtein betaResuscitationEnergy metabolismCritical regulatorArrestVivoActivationProtein phosphatase-2A is activated in pig brain following cardiac arrest and resuscitation
Zhang TT, Platholi J, Heerdt PM, Hemmings HC, Tung HY. Protein phosphatase-2A is activated in pig brain following cardiac arrest and resuscitation. Metabolic Brain Disease 2008, 23: 95-104. PMID: 18197471, DOI: 10.1007/s11011-007-9074-1.Peer-Reviewed Original Research
2007
Differential regulation of protein phosphatase-1I by neurabin
Bullock SA, Platholi J, Gjyrezi A, Heerdt PM, Tung HY, Hemmings HC. Differential regulation of protein phosphatase-1I by neurabin. Biochemical And Biophysical Research Communications 2007, 358: 140-144. PMID: 17467665, PMCID: PMC1989152, DOI: 10.1016/j.bbrc.2007.04.076.Peer-Reviewed Original ResearchConceptsProtein phosphatase 1Phosphatase 1Protein phosphatase 1IProtein phosphataseActivation domainMultimeric complexesRegulatory subunitCatalytic subunitSubcellular localizationProtein kinaseSubstrate specificityRegulatory proteinsUnidentified proteinsNeurabinDifferential regulationNovel mechanismProteinSubunitsRegulationMajor formDistinct formsDependent formKinaseActinActivator