Featured Publications
TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding
Schofield JA, Duffy EE, Kiefer L, Sullivan MC, Simon MD. TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nature Methods 2018, 15: 221-225. PMID: 29355846, PMCID: PMC5831505, DOI: 10.1038/nmeth.4582.Peer-Reviewed Original Research
2022
Internally controlled RNA sequencing comparisons using nucleoside recoding chemistry
Courvan MCS, Niederer RO, Vock IW, Kiefer L, Gilbert WV, Simon MD. Internally controlled RNA sequencing comparisons using nucleoside recoding chemistry. Nucleic Acids Research 2022, 50: e110-e110. PMID: 36018791, PMCID: PMC9638901, DOI: 10.1093/nar/gkac693.Peer-Reviewed Original ResearchConceptsBiochemical manipulationRNA polymerase II inhibitionSodium arsenite stressSet of transcriptsNew biological understandingTranscript regulationArsenite stressMRNA associationRNA transcriptsBiological insightsHeat shockMetabolic labelBiological understandingRNA contentRNA levelsTranscriptsCell culturesII inhibitionBiological variationDDX5RibosomesMCM2RNAAbundanceRegulation
2018
Gaining insight into transcriptome‐wide RNA population dynamics through the chemistry of 4‐thiouridine
Duffy EE, Schofield JA, Simon MD. Gaining insight into transcriptome‐wide RNA population dynamics through the chemistry of 4‐thiouridine. Wiley Interdisciplinary Reviews - RNA 2018, 10: e1513. PMID: 30370679, PMCID: PMC6768404, DOI: 10.1002/wrna.1513.Peer-Reviewed Original ResearchConceptsDifferent RNA populationsRNA populationsNumerous experimental strategiesCellular RNA levelsMetabolic labeling experimentsRNA levelsRNA metabolismRNA turnoverRNA stabilityRNA transcriptionRNA sequencingMetabolic labelingPopulation dynamicsMetabolic labelTargeted incorporationRNA analysisRNA methodWhole cellsC mutationLabeling experimentsExperimental strategiesSequencingAvailable poolGenomeCellsSolid phase chemistry to covalently and reversibly capture thiolated RNA
Duffy EE, Canzio D, Maniatis T, Simon MD. Solid phase chemistry to covalently and reversibly capture thiolated RNA. Nucleic Acids Research 2018, 46: gky556-. PMID: 29986098, PMCID: PMC6101502, DOI: 10.1093/nar/gky556.Peer-Reviewed Original Research
2015
Tracking Distinct RNA Populations Using Efficient and Reversible Covalent Chemistry
Duffy EE, Rutenberg-Schoenberg M, Stark CD, Kitchen RR, Gerstein MB, Simon MD. Tracking Distinct RNA Populations Using Efficient and Reversible Covalent Chemistry. Molecular Cell 2015, 59: 858-866. PMID: 26340425, PMCID: PMC4560836, DOI: 10.1016/j.molcel.2015.07.023.Peer-Reviewed Original ResearchConceptsDynamic transcriptome analysisReversible covalent chemistryGlobal miRNA levelsMiRNA processing machineryTissue-specific transcriptionCovalent chemistryCultured human cellsChemical methodsImproved chemistryRNA turnoverRNA populationsTranscriptome analysisMethanethiosulfonate reagentsProcessing machineryHuman cellsHPDP-biotinHigh yieldsDisulfide bondsChemistryMiRNA levelsRNADifferent populationsTurnoverBondsReagents