2023
Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton
Amiri S, Muresan C, Shang X, Huet-Calderwood C, Schwartz M, Calderwood D, Murrell M. Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton. Nature Communications 2023, 14: 8011. PMID: 38049429, PMCID: PMC10695988, DOI: 10.1038/s41467-023-43612-5.Peer-Reviewed Original ResearchConceptsF-actin architectureStress fibersCortical actinActin cytoskeletonMolecular tension sensorsF-actin stress fibersF-actin cytoskeletonFilamentous actin cytoskeletonMechanical forcesTension sensorCell divisionCytoskeletonCell migrationExtracellular matrixMyosin inhibitionActinDirection of stretchCellsCell axisUniaxial stretchStretchFRETTLN1 contains a cancer-associated cassette exon that alters talin-1 mechanosensitivity
Gallego-Paez L, Edwards W, Chanduri M, Guo Y, Koorman T, Lee C, Grexa N, Derksen P, Yan J, Schwartz M, Mauer J, Goult B. TLN1 contains a cancer-associated cassette exon that alters talin-1 mechanosensitivity. Journal Of Cell Biology 2023, 222: e202209010. PMID: 36880935, PMCID: PMC9997659, DOI: 10.1083/jcb.202209010.Peer-Reviewed Original ResearchConceptsExon 17bTerminal FERM domainVinculin bindingFERM domainSwitch domainAdhesion dynamicsCassette exonsSplicing analysisAdapter proteinTLN1Single isoformIsoform switchTalin-1Amino acidsFrame insertionExonsBiochemical analysisIsoformsProteinExon 17CytoskeletonGenesMechanotransductionDomainIntegrins
2022
Integrin Conformational Dynamics and Mechanotransduction
Kolasangiani R, Bidone T, Schwartz M. Integrin Conformational Dynamics and Mechanotransduction. Cells 2022, 11: 3584. PMID: 36429013, PMCID: PMC9688440, DOI: 10.3390/cells11223584.Peer-Reviewed Original ResearchConceptsCell-cell adhesionCell-extracellular matrixExtracellular ligandsIntegrin affinityConformational dynamicsIntegrin familyConformational statesConformational transitionTissue integrityCell functionCentral mediatorRemarkable convergenceMechanical forcesForce transmissionCytoskeletonMechanotransductionAdhesionFirm adhesionUnanswered questionsIntegrinsNew informationPathwayLigands
2019
Filamin A mediates isotropic distribution of applied force across the actin network
Kumar A, Shutova MS, Tanaka K, Iwamoto DV, Calderwood DA, Svitkina TM, Schwartz MA. Filamin A mediates isotropic distribution of applied force across the actin network. Journal Of Cell Biology 2019, 218: 2481-2491. PMID: 31315944, PMCID: PMC6683746, DOI: 10.1083/jcb.201901086.Peer-Reviewed Original ResearchConceptsTalin tension sensorStress fibersActin networkFilamin ACortical actin networkCortical actin filamentsIntegrin-mediated adhesionActin cytoskeletonFocal adhesionsCortical actinFLNA knockdownActin filamentsTalinKnockdownCell sensingDirection of stretchTension sensorPhysiology of muscleUniaxial stretchForce transmissionCytoskeletonStrainsStretchAdhesionReexpressionMKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation
Hu X, Liu ZZ, Chen X, Schulz VP, Kumar A, Hartman AA, Weinstein J, Johnston JF, Rodriguez EC, Eastman AE, Cheng J, Min L, Zhong M, Carroll C, Gallagher PG, Lu J, Schwartz M, King MC, Krause DS, Guo S. MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nature Communications 2019, 10: 1695. PMID: 30979898, PMCID: PMC6461646, DOI: 10.1038/s41467-019-09636-6.Peer-Reviewed Original ResearchConceptsCell fate reprogrammingChromatin accessibilityActin cytoskeletonSomatic cell reprogrammingPluripotency transcription factorsGlobal chromatin accessibilityGenomic accessibilityCytoskeleton (LINC) complexCell reprogrammingCytoskeletal genesTranscription factorsReprogrammingPluripotencyChromatinCytoskeletonMKL1Unappreciated aspectPathwayNuclear volumeNucleoskeletonSUN2CellsActivationGenesExpression
2017
Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish
Lagendijk AK, Gomez GA, Baek S, Hesselson D, Hughes WE, Paterson S, Conway DE, Belting HG, Affolter M, Smith KA, Schwartz MA, Yap AS, Hogan BM. Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish. Nature Communications 2017, 8: 1402. PMID: 29123087, PMCID: PMC5680264, DOI: 10.1038/s41467-017-01325-6.Peer-Reviewed Original ResearchConceptsVE-cadherinEndothelial cell-cell junctionsCell-cell junctionsActo-myosin cytoskeletonTension sensorActo-myosin contractilityJunctional tensionEmbryonic developmentDiverse rolesVascular developmentLive zebrafishChemical perturbationsFRET measurementsZebrafishAdjacent cellsMolecular changesEndothelial cellsCellsBiosensor approachCytoskeletonHomeostasisLocalizationVivoTensile changesMatures
2013
Integrins in mechanotransduction
Ross TD, Coon BG, Yun S, Baeyens N, Tanaka K, Ouyang M, Schwartz MA. Integrins in mechanotransduction. Current Opinion In Cell Biology 2013, 25: 613-618. PMID: 23797029, PMCID: PMC3757118, DOI: 10.1016/j.ceb.2013.05.006.Peer-Reviewed Original ResearchConceptsMolecular mechanismsIntegrin-mediated adhesionImportant regulatory eventActin cytoskeletonRegulatory eventsExtracellular matrixNormal physiologyCell functionMajor insightsCentral roleCellsRecent advancesCytoskeletonEffect of forceMechanotransductionAdhesionIntegrinsPathwayPhysiologyMechanismRecent workFluid Shear Stress on Endothelial Cells Modulates Mechanical Tension across VE-Cadherin and PECAM-1
Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA. Fluid Shear Stress on Endothelial Cells Modulates Mechanical Tension across VE-Cadherin and PECAM-1. Current Biology 2013, 23: 1024-1030. PMID: 23684974, PMCID: PMC3676707, DOI: 10.1016/j.cub.2013.04.049.Peer-Reviewed Original ResearchConceptsFluid shear stressVE-cadherinCell-cell junctionsPECAM-1Junctional tensionCytoskeletal remodelingVascular morphogenesisGene expressionComplex consistingCells triggersFlow-dependent vascular remodelingIon channelsFRET measurementsEndothelial cells triggersMechanical tensionNormal vascular functionTension sensorDetectable tensionEC responseStatic cultureJunctional receptorsRemodelingCytoskeletonMorphogenesisVascular remodeling
2011
Dynamic molecular processes mediate cellular mechanotransduction
Hoffman BD, Grashoff C, Schwartz MA. Dynamic molecular processes mediate cellular mechanotransduction. Nature 2011, 475: 316-323. PMID: 21776077, PMCID: PMC6449687, DOI: 10.1038/nature10316.Peer-Reviewed Original ResearchConceptsCell adhesion complexesDistinct signaling pathwaysTransduction of forceDynamic molecular processesEmbryonic developmentCellular mechanotransductionPlasma membraneBiochemical signalsAdult physiologySignaling pathwaysCellular responsesSubcellular structuresMolecular processesNumerous diseasesMechanical forcesMuscular dystrophyCytoskeletonTransductionMechanotransductionPathwayPhysiologyDisassemblyRecent workMembraneAssembly
2010
Integrins and Extracellular Matrix in Mechanotransduction
Schwartz MA. Integrins and Extracellular Matrix in Mechanotransduction. Cold Spring Harbor Perspectives In Biology 2010, 2: a005066. PMID: 21084386, PMCID: PMC2982167, DOI: 10.1101/cshperspect.a005066.Peer-Reviewed Original ResearchConceptsIntegrin-mediated adhesionExtracellular matrixCytoskeletal linker proteinExtracellular matrix fibrilsIntracellular actin filamentsLinker proteinGenetic programActin filamentsExtracellular structuresCell survivalMatrix fibrilsIntegrinsCell functionCurrent knowledgeMechanotransductionMechanical forcesTransmits forcesIntracellularAdhesionCellsCytoskeletonProteinRegulationPathwayEnvironmental forces
2008
Cell adhesion receptors in mechanotransduction
Schwartz MA, DeSimone DW. Cell adhesion receptors in mechanotransduction. Current Opinion In Cell Biology 2008, 20: 551-556. PMID: 18583124, PMCID: PMC2581799, DOI: 10.1016/j.ceb.2008.05.005.Peer-Reviewed Original ResearchConceptsAdhesion receptorsCell fate decisionsCadherin-mediated adhesionCell adhesion receptorsFate decisionsMorphogenetic movementsTissue-level responsesCultured cellsExtracellular matrixMechanotransductionLevel responseCellsCytoskeletonCadherinReceptorsOrganismsAdhesionIntegrinsPathwayMechanical stimulationIntracellularMechanismMechanical stressResponseCentral mechanisms
1998
Regulation of inositol lipid kinases by Rho and Rac
Ren X, Schwartz M. Regulation of inositol lipid kinases by Rho and Rac. Current Opinion In Genetics & Development 1998, 8: 63-67. PMID: 9529607, DOI: 10.1016/s0959-437x(98)80063-4.Peer-Reviewed Original Research
1994
Integrins as Signal Transducing Receptors
Schwartz M. Integrins as Signal Transducing Receptors. 1994, 33-47. DOI: 10.1016/b978-0-08-091729-0.50007-3.Peer-Reviewed Original ResearchSignal transducing receptorsExtracellular matrixProtein kinase CCell functionIntracellular second messengerRole of integrinsCytoskeletal organizationInositol lipidsCell shapeSecond messengerKinase CAnchorage-dependent cellsSuch messengersCell typesContact of cellsOnly adhesionIntegrinsMessengerActivation of plateletsCellsCytoskeletonRecent dataReceptorsAdhesionDifferentiation
1992
Transmembrane signalling by integrins
Schwartz M. Transmembrane signalling by integrins. Trends In Cell Biology 1992, 2: 304-308. PMID: 14731926, DOI: 10.1016/0962-8924(92)90120-c.Peer-Reviewed Original Research
1989
Studying the Cytoskeleton by Label Transfer Crosslinking: Uses and Limitations
Schwartz M. Studying the Cytoskeleton by Label Transfer Crosslinking: Uses and Limitations. Nato Science Series C: 1989, 157-168. DOI: 10.1007/978-94-009-0925-0_11.Peer-Reviewed Original ResearchMembrane proteinsIntegral plasma membrane proteinsPlasma membrane proteinsAmino acidsRed blood cell cytoskeletonDictyostelium discoideumProtein interactionsCell cytoskeletonActin bindsAromatic residuesProteinCytoskeletonNonspecific labelingHAHSDiscoideumEster bondActinBindsCysteineResiduesAcidLabeling