2023
Progressive shingles in a toddler due to reactivation of Varicella Zoster vaccine virus four days after infection with SARS-CoV-2; a case report
Miller C, Taylor-Salmon E, Emuren L, Landry M, Gershon A, Miller G. Progressive shingles in a toddler due to reactivation of Varicella Zoster vaccine virus four days after infection with SARS-CoV-2; a case report. BMC Infectious Diseases 2023, 23: 854. PMID: 38057696, PMCID: PMC10698951, DOI: 10.1186/s12879-023-08809-5.Peer-Reviewed Original ResearchConceptsVaricella-zoster virusVZV reactivationVaccine-strain varicella-zoster virusSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Latent varicella zoster virusSymptomatic COVID-19 infectionRespiratory syndrome coronavirus 2SARS-CoV2 infectionSyndrome coronavirus 2COVID-19 infectionVaccine-type strainsSARS-CoV-2Vesicular rashPediatric patientsSignificant morbidityClinical syndromeCoronavirus 2Single doseCase reportGeneral populationMechanical traumaDisease processHZ casesPhysiologic stress
2020
Clinical implications of SARS-CoV-2 cycle threshold values in solid organ transplant recipients
Gaston DC, Malinis M, Osborn R, Peaper DR, Landry M, Juthani-Mehta M, Azar MM. Clinical implications of SARS-CoV-2 cycle threshold values in solid organ transplant recipients. American Journal Of Transplantation 2020, 21: 1304-1311. PMID: 33043603, PMCID: PMC7675520, DOI: 10.1111/ajt.16357.Peer-Reviewed Original ResearchConceptsSolid organ transplant recipientsOrgan transplant recipientsClinical implicationsCycle threshold valuesSOT patientsTransplant recipientsSymptom onsetYale New Haven Health SystemUpper respiratory tract samplesSARS-CoV-2 viral RNASARS-CoV-2 viral dynamicsAdult SOT recipientsRetrospective chart reviewRespiratory tract samplesSARS-CoV-2 cycle threshold valuesInfection prevention measuresCOVID-19 severityViral RNAHigher clinical acuityPrimary diagnostic testRT-PCR assaysSOT recipientsChart reviewViral loadAdmission severityInterference between rhinovirus and influenza A virus: a clinical data analysis and experimental infection study
Wu A, Mihaylova VT, Landry ML, Foxman EF. Interference between rhinovirus and influenza A virus: a clinical data analysis and experimental infection study. The Lancet Microbe 2020, 1: e254-e262. PMID: 33103132, PMCID: PMC7580833, DOI: 10.1016/s2666-5247(20)30114-2.Peer-Reviewed Original ResearchConceptsRhinovirus infectionInterferon-stimulated genesExperimental infection studiesClinical data analysisMock infectionInfection studiesDay 3ISG expressionViral interferenceInterferon responsePrimary human airway epithelial culturesYale-New Haven HospitalHuman airway epithelial culturesIAV RNASeasonal influenza epidemicsNational InstituteAirway epithelial culturesReverse transcription-quantitative PCRTranscription-quantitative PCRElectronic medical record systemPeak virusAirway mucosaMedical record systemRespiratory virusesIAV infectionChallenges in use of saliva for detection of SARS CoV-2 RNA in symptomatic outpatients
Landry ML, Criscuolo J, Peaper DR. Challenges in use of saliva for detection of SARS CoV-2 RNA in symptomatic outpatients. Journal Of Clinical Virology 2020, 130: 104567. PMID: 32750665, PMCID: PMC7392849, DOI: 10.1016/j.jcv.2020.104567.Peer-Reviewed Original ResearchMeSH KeywordsBetacoronavirusClinical Laboratory TechniquesCoronavirus InfectionsCOVID-19COVID-19 TestingCOVID-19 VaccinesHumansMolecular Diagnostic TechniquesNasopharynxOutpatientsPandemicsPneumonia, ViralProspective StudiesReal-Time Polymerase Chain ReactionRNA, ViralSalivaSARS-CoV-2Specimen HandlingConceptsNasopharyngeal swabsReal-time RT-PCRSymptomatic outpatientsRT-PCRSARS-CoV-2 positivitySaliva samplesSARS-CoV-2 testingMedian cycle threshold valuePure salivaSARS-CoV-2 RNA detectionSARS-CoV-2 RNACoV-2 testingUse of salivaCycle threshold valuesSymptomatic patientsOverall sensitivityRNA detectionSalivaCOVID-19OutpatientsHigh-volume testingPatientsSwabsAnalytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets
Vogels CBF, Brito AF, Wyllie AL, Fauver JR, Ott IM, Kalinich CC, Petrone ME, Casanovas-Massana A, Catherine Muenker M, Moore AJ, Klein J, Lu P, Lu-Culligan A, Jiang X, Kim DJ, Kudo E, Mao T, Moriyama M, Oh JE, Park A, Silva J, Song E, Takahashi T, Taura M, Tokuyama M, Venkataraman A, Weizman OE, Wong P, Yang Y, Cheemarla NR, White EB, Lapidus S, Earnest R, Geng B, Vijayakumar P, Odio C, Fournier J, Bermejo S, Farhadian S, Dela Cruz CS, Iwasaki A, Ko AI, Landry ML, Foxman EF, Grubaugh ND. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. Nature Microbiology 2020, 5: 1299-1305. PMID: 32651556, PMCID: PMC9241364, DOI: 10.1038/s41564-020-0761-6.Peer-Reviewed Original ResearchConceptsSARS-CoV-2SARS-CoV-2 RTSevere acute respiratory syndrome coronavirusAcute respiratory syndrome coronavirusViral RNA copiesPublic health laboratoriesPublic health interventionsReverse transcription-PCR assaySARS-CoV-2 diagnostic testingDiagnostic assaysTranscription-PCR assaySARS-CoV-2 evolutionQuantitative reverse transcription-PCR assaysRapid diagnostic assaysHealth laboratoriesHealth interventionsDiagnostic testingRNA copiesPrimer-probe setsAssaysLow sensitivityCritical needAnalytical sensitivity
2017
Antiviral Response in the Nasopharynx Identifies Patients With Respiratory Virus Infection
Landry ML, Foxman EF. Antiviral Response in the Nasopharynx Identifies Patients With Respiratory Virus Infection. The Journal Of Infectious Diseases 2017, 217: 897-905. PMID: 29281100, PMCID: PMC5853594, DOI: 10.1093/infdis/jix648.Peer-Reviewed Original ResearchConceptsRespiratory virusesNasopharyngeal swabsViral infectionCXCL10 protein levelsPatient nasopharyngeal swabsRespiratory virus infectionsHuman nasal epithelial cellsManagement of patientsRespiratory virus detectionNasal epithelial cellsSingle host proteinVirus detectionSimple diagnostic testIdentifies patientsRespiratory symptomsRespiratory infectionsRespiratory illnessHigh burdenVirus infectionReceptor RIGCost-effective testAntiviral responseAccurate diagnosisDiagnostic testsInfection
2016
Laboratory Diagnosis of Zika Virus Infection
Landry ML, St George K. Laboratory Diagnosis of Zika Virus Infection. Archives Of Pathology & Laboratory Medicine 2016, 141: 60-67. PMID: 27763787, DOI: 10.5858/arpa.2016-0406-sa.Peer-Reviewed Original ResearchConceptsNucleic acid amplification testsZika virus infectionZika infectionVirus infectionAmplification testsLaboratory diagnosisNucleic acid amplification testingCommercial nucleic acid amplification testsAccurate antibody testZika virus testingPublic health recommendationsEmergency use authorizationAcute infectionAmplification testingSerology resultsPast infectionFlavivirus antigensHealth recommendationsVirus testingCurrent recommendationsAntibody testApplicable diagnostic toolsVirus epitopesAccurate diagnosisInfection
2009
Low-Abundance HIV Drug-Resistant Viral Variants in Treatment-Experienced Persons Correlate with Historical Antiretroviral Use
Le T, Chiarella J, Simen BB, Hanczaruk B, Egholm M, Landry ML, Dieckhaus K, Rosen MI, Kozal MJ. Low-Abundance HIV Drug-Resistant Viral Variants in Treatment-Experienced Persons Correlate with Historical Antiretroviral Use. PLOS ONE 2009, 4: e6079. PMID: 19562031, PMCID: PMC2698118, DOI: 10.1371/journal.pone.0006079.Peer-Reviewed Original ResearchConceptsAntiretroviral treatment historyDrug-resistant mutationsVirologic failureAntiretroviral useDrug-resistant variantsTreatment historyOverall burdenGenotypic resistanceHIV drug-resistant mutationsHIV drug-resistant variantsStanford HIV database algorithmDrug-resistant viral variantsSubsequent antiretroviral regimensTreatment-experienced patientsConventional genotypingPrior treatment historyUltra-deep pyrosequencingSanger sequencingAntiretroviral regimensMore antiretroviralsChart reviewAntiretroviral drugsUltra-deep sequencingClinical implicationsViral variants
2006
Coronavirus HKU1 Infection in the United States
Esper F, Weibel C, Ferguson D, Landry ML, Kahn JS. Coronavirus HKU1 Infection in the United States. Emerging Infectious Diseases 2006, 12: 775-779. PMID: 16704837, PMCID: PMC3374449, DOI: 10.3201/eid1205.051316.Peer-Reviewed Original ResearchConceptsHCoV-HKU1Respiratory specimensLower respiratory tract infectionsLower respiratory tract diseaseHCoV-HKU1 infectionRespiratory tract infectionsRespiratory syncytial virusRespiratory tract diseaseReverse transcription-polymerase chain reactionNew human coronavirusYears of ageTranscription-polymerase chain reactionTract infectionsSyncytial virusPositive childrenParainfluenza virusTract diseaseRespiratory tractHuman coronavirusesPositive specimensInfluenza virusInfectionChain reactionChildrenVirus
2005
Real-Time Nucleic Acid Sequence-Based Amplification Using Molecular Beacons for Detection of Enterovirus RNA in Clinical Specimens
Landry ML, Garner R, Ferguson D. Real-Time Nucleic Acid Sequence-Based Amplification Using Molecular Beacons for Detection of Enterovirus RNA in Clinical Specimens. Journal Of Clinical Microbiology 2005, 43: 3136-3139. PMID: 16000425, PMCID: PMC1169110, DOI: 10.1128/jcm.43.7.3136-3139.2005.Peer-Reviewed Original ResearchConceptsNucleic acid sequence-based amplificationTime Nucleic Acid Sequence-Based AmplificationEV-positive samplesReal-time nucleic acid sequence-based amplificationDetection of enterovirusesEnterovirus RNAStool samplesCerebrospinal fluidNASBA assayClinical specimensEnterovirusesMolecular beacon technologyAssays
2004
A 1-Year Experience with Human Metapneumovirus in Children Aged <5 Years
Esper F, Martinello RA, Boucher D, Weibel C, Ferguson D, Landry ML, Kahn JS. A 1-Year Experience with Human Metapneumovirus in Children Aged <5 Years. The Journal Of Infectious Diseases 2004, 189: 1388-1396. PMID: 15073675, PMCID: PMC7109939, DOI: 10.1086/382482.Peer-Reviewed Original ResearchConceptsHuman metapneumovirusPresence of hMPVStudy periodHMPV-positive childrenRespiratory syncytial virusParainfluenza virus 1Respiratory tract diseaseReverse transcription-polymerase chain reactionDirect fluorescent antibody testFluorescent antibody testSyncytial virusRespiratory specimensPolymerase chain reactionChildren AgedCommon findingInfluenza ARespiratory pathogensChest wallAntibody testVirus 1Chain reactionNegative resultsMetapneumovirusSignificant proportionChildren
2003
Comparison of the NucliSens Basic Kit (Nucleic Acid Sequence-Based Amplification) and the Argene Biosoft Enterovirus Consensus Reverse Transcription-PCR Assays for Rapid Detection of Enterovirus RNA in Clinical Specimens
Landry ML, Garner R, Ferguson D. Comparison of the NucliSens Basic Kit (Nucleic Acid Sequence-Based Amplification) and the Argene Biosoft Enterovirus Consensus Reverse Transcription-PCR Assays for Rapid Detection of Enterovirus RNA in Clinical Specimens. Journal Of Clinical Microbiology 2003, 41: 5006-5010. PMID: 14605131, PMCID: PMC262477, DOI: 10.1128/jcm.41.11.5006-5010.2003.Peer-Reviewed Original ResearchConceptsNucleic acid sequence-based amplificationNucliSens Basic KitRT-PCREnterovirus RNABasic KitEnterovirus-positive samplesReverse transcription-PCR assayTranscription-PCR assayNasopharyngeal samplesRT-PCR kitVirus isolationClinical specimensTranscription-PCRPositive samplesComparable sensitivityKitMolecular methodsEnterovirusesRapid Enterovirus RNA Detection in Clinical Specimens by Using Nucleic Acid Sequence-Based Amplification
Landry ML, Garner R, Ferguson D. Rapid Enterovirus RNA Detection in Clinical Specimens by Using Nucleic Acid Sequence-Based Amplification. Journal Of Clinical Microbiology 2003, 41: 346-350. PMID: 12517871, PMCID: PMC149595, DOI: 10.1128/jcm.41.1.346-350.2003.Peer-Reviewed Original ResearchConceptsNucleic acid sequence-based amplificationPrimary rhesus monkey kidneyRNA detectionNucliSens Basic KitRhesus monkey kidneyGreen monkey kidney cellsBuffalo green monkey kidney cellsMonkey kidney cellsVirus isolationClinical specimensEnterovirus detectionMonkey kidneyBasic KitMRC-5Kidney cellsCell culturesEV isolationRhabdomyosarcomaKidney
2001
Use of Plastic Vacutainer Tubes for Quantification of Human Immunodeficiency Virus Type 1 in Blood Specimens
Landry M, Garner R, Ferguson D. Use of Plastic Vacutainer Tubes for Quantification of Human Immunodeficiency Virus Type 1 in Blood Specimens. Journal Of Clinical Microbiology 2001, 39: 354-356. PMID: 11136799, PMCID: PMC87730, DOI: 10.1128/jcm.39.1.354-356.2001.Peer-Reviewed Original ResearchMeSH KeywordsBlood Specimen CollectionGlassHIV InfectionsHIV-1HumansPlasticsRNA, ViralViral LoadViremia
1985
Nucleic Acid Hybridization in the Diagnosis of Viral Infections
Landry M, Fong C. Nucleic Acid Hybridization in the Diagnosis of Viral Infections. Clinics In Laboratory Medicine 1985, 5: 513-529. PMID: 3899479, DOI: 10.1016/s0272-2712(18)30857-6.Peer-Reviewed Original ResearchConceptsNucleic acid hybridizationRecombinant DNA technologyAcid hybridizationHigh specific activityM13 bacteriophageDNA technologyEpstein-Barr virusStandard isolationStable probesRoutine diagnostic laboratorySample DNABiotinylated probesSensitive assaySpecific activityHepatitis B virusVaricella-zoster virusSpecific diagnostic testsReaction timeClinical virologyCell culturesHybridization techniqueDiagnostic laboratoriesProbeSynthesisHuman papillomavirus