Huabing Li, PhD
Assistant Professor AdjunctCards
About
Research
Publications
2024
The physiological and pathological roles of RNA modifications in T cells
Deng Y, Zhou J, Li H. The physiological and pathological roles of RNA modifications in T cells. Cell Chemical Biology 2024, 31: 1578-1592. PMID: 38986618, DOI: 10.1016/j.chembiol.2024.06.003.Peer-Reviewed Original ResearchRNA modificationsDynamic chemical modificationsInternal RNA modificationFunctions of mammalian cellsT cell developmentPathological roleRNA transcriptsCellular stimuliMammalian cellsRNA moleculesPost-transcriptionallyT cell biologyT cell survivalT cellsCell developmentCell survivalCell biologyRNAT cell-based immunotherapyCell-based immunotherapyT cell immunityAdaptive immunityCellsDifferentiationCell immunity
2022
RNA methylation in immune cells
Chen Y, Oh M, Flavell R, Li H. RNA methylation in immune cells. Advances In Immunology 2022, 155: 39-94. PMID: 36357012, DOI: 10.1016/bs.ai.2022.08.002.Peer-Reviewed Original ResearchDiverging regulation of Bach2 protein and RNA expression determine cell fate in early B cell response
Hu Q, Xu T, Zhang M, Zhang H, Liu Y, Li H, Chen C, Zheng J, Zhang Z, Li F, Shen N, Zhang W, Melnick A, Huang C. Diverging regulation of Bach2 protein and RNA expression determine cell fate in early B cell response. Cell Reports 2022, 40: 111035. PMID: 35793628, PMCID: PMC9550188, DOI: 10.1016/j.celrep.2022.111035.Peer-Reviewed Original ResearchConceptsBach2 proteinCell fateActivated B cellsMemory B cellsB cellsCell fate choiceDetermines cell fateCell fate outcomesRapamycin complex 1B cell fateEffector cellsGerminal centre B cell fatePivotal transcription factorB cell receptor affinityEarly B cell responsesTranscription factorsDependent translationB cell responsesPrimary humoral responseGC fateMechanistic targetHumoral responseProteinPlasma cellsDifferential dynamicsDENR controls JAK2 translation to induce PD-L1 expression for tumor immune evasion
Chen B, Hu J, Hu X, Chen H, Bao R, Zhou Y, Ye Y, Zhan M, Cai W, Li H, Li HB. DENR controls JAK2 translation to induce PD-L1 expression for tumor immune evasion. Nature Communications 2022, 13: 2059. PMID: 35440133, PMCID: PMC9018773, DOI: 10.1038/s41467-022-29754-y.Peer-Reviewed Original ResearchConceptsPD-L1 expressionTumor immune evasionImmune evasionReduced PD-L1 expressionDeath ligand 1Tumor-killing activityT cellsTherapeutic targetTumor growthCancer cellsCRISPR/Cas9 screeningLigand 1Cell homeostasisKinase 2ExpressionEvasionCD8ImmunotherapyCellsIFNγDysfunctionRBP dysfunctionTumorsCancerm6A mRNA modification maintains colonic epithelial cell homeostasis via NF-κB–mediated antiapoptotic pathway
Zhang T, Ding C, Chen H, Zhao J, Chen Z, Chen B, Mao K, Hao Y, Roulis M, Xu H, Kluger Y, Zou Q, Ye Y, Zhan M, Flavell RA, Li HB. m6A mRNA modification maintains colonic epithelial cell homeostasis via NF-κB–mediated antiapoptotic pathway. Science Advances 2022, 8: eabl5723. PMID: 35333576, PMCID: PMC8956260, DOI: 10.1126/sciadv.abl5723.Peer-Reviewed Original ResearchConceptsMucosal barrier dysfunctionInflammatory bowel diseaseBarrier dysfunctionColonic epithelial cellsColonic mucosal barrier dysfunctionEpithelial cellsStem cellsNF-κB pathwayPotential therapeutic targetEpithelial cell deathEpithelial cell homeostasisSevere colitisBowel diseaseColonic stem cellsTherapeutic targetMouse colonStem cell apoptosisDysfunctionMajor causeCell apoptosisImportant modulatorPathological processesAntiapoptotic pathwaysSpecific deletionCell homeostasis
2021
m6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity
Qin Y, Li B, Arumugam S, Lu Q, Mankash SM, Li J, Sun B, Li J, Flavell RA, Li HB, Ouyang X. m6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity. Cell Reports 2021, 37: 109968. PMID: 34758326, PMCID: PMC8667589, DOI: 10.1016/j.celrep.2021.109968.Peer-Reviewed Original ResearchConceptsNon-alcoholic fatty liver diseaseProgression of NAFLDLineage-restricted deletionFatty liver diseaseMultiple mRNA transcriptsMyeloid cell activationDiet-induced developmentMethyladenosine (m<sup>6</sup>A) RNA modificationMRNA metabolismProtein methyltransferaseLiver diseaseRNA modificationsCellular stressMetabolic reprogrammingDDIT4 mRNACell activationObesityDifferential expressionMammalian targetMRNA transcriptsSignificant downregulationCytokine stimulationPathway activityMetabolic phenotypeMRNA levelsMETTL3-mediated m6A RNA methylation promotes the anti-tumour immunity of natural killer cells
Song H, Song J, Cheng M, Zheng M, Wang T, Tian S, Flavell RA, Zhu S, Li HB, Ding C, Wei H, Sun R, Peng H, Tian Z. METTL3-mediated m6A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nature Communications 2021, 12: 5522. PMID: 34535671, PMCID: PMC8448775, DOI: 10.1038/s41467-021-25803-0.Peer-Reviewed Original ResearchMeSH KeywordsAdenosineAnimalsCarcinogenesisCell Line, TumorGene DeletionHomeostasisInterleukin-15Killer Cells, NaturalLymphocytes, Tumor-InfiltratingMethylationMethyltransferasesMice, Inbred C57BLMice, KnockoutNeoplasmsProtein Tyrosine Phosphatase, Non-Receptor Type 11Proto-Oncogene Proteins c-aktRNASignal TransductionTumor MicroenvironmentConceptsAnti-tumor immunityNK cellsTumor-infiltrating NK cellsNK cell infiltrationNatural killer cellsAccelerated tumor developmentExert critical rolesImmunosurveillance functionKiller cellsIL-15Cell infiltrationTumor microenvironmentTumor developmentProtein expressionSuppressed activationM6A RNA methylationEffector moleculesExpression levelsMETTL3Cells altersImmunityM6A methylationCellsPositive correlationHomeostasism6A demethylase ALKBH5 controls CD4+ T cell pathogenicity and promotes autoimmunity
Zhou J, Zhang X, Hu J, Qu R, Yu Z, Xu H, Chen H, Yan L, Ding C, Zou Q, Ye Y, Wang Z, Flavell RA, Li HB. m6A demethylase ALKBH5 controls CD4+ T cell pathogenicity and promotes autoimmunity. Science Advances 2021, 7: eabg0470. PMID: 34134995, PMCID: PMC8208713, DOI: 10.1126/sciadv.abg0470.Peer-Reviewed Original ResearchAlkB homolog 5T cell-specific ablationT cellsMRNA stabilityCell-specific ablationMethyladenosine (m<sup>6</sup>A) modificationHomolog 5Pathogenicity of CD4Messenger RNAErasersProtein expressionAdoptive transfer colitisExperimental autoimmune encephalomyelitisHomeostasis of CD4T cell responsesSpecific roleT cell pathogenicityCentral nervous systemPooled CRISPR screening identifies m6A as a positive regulator of macrophage activation
Tong J, Wang X, Liu Y, Ren X, Wang A, Chen Z, Yao J, Mao K, Liu T, Meng FL, Pan W, Zou Q, Liu J, Zhou Y, Xia Q, Flavell RA, Zhu S, Li HB. Pooled CRISPR screening identifies m6A as a positive regulator of macrophage activation. Science Advances 2021, 7: eabd4742. PMID: 33910903, PMCID: PMC8081357, DOI: 10.1126/sciadv.abd4742.Peer-Reviewed Original ResearchConceptsMacrophage activationPotential cancer immunotherapy targetInnate immune cellsFaster tumor growthTNF-α productionInnate immune responseCancer immunotherapy targetCre miceImmune cellsImmunotherapy targetImmune responseLPS stimulationTumor growthBacterial infectionsTop candidate genesDeficient macrophagesMultiple cellular responsesMETTL3 deficiencyActivationUnknown roleMETTL3Negative regulatorBinding proteinCellular responsesRNA binding proteinMultiple Functions of RNA Methylation in T Cells: A Review
Chao Y, Li H, Zhou J. Multiple Functions of RNA Methylation in T Cells: A Review. Frontiers In Immunology 2021, 12: 627455. PMID: 33912158, PMCID: PMC8071866, DOI: 10.3389/fimmu.2021.627455.Peer-Reviewed Original ResearchConceptsRNA methylationRNA modificationsMessenger RNAFate determinationEpigenetic regulationEpigenetic modificationsNoncoding RNAsCell homeostasisUbiquitous mechanismMethylationBiological significanceT cell homeostasisMultiple functionsCell proliferationEssential rolePotential therapeutic strategyRecent findingsRNAImmune responseBiological activityPathological statesT cellsCellsTherapeutic strategiesViral infection