2024
Extracting Systemic Anticancer Therapy and Response Information From Clinical Notes Following the RECIST Definition
Zuo X, Kumar A, Shen S, Li J, Cong G, Jin E, Chen Q, Warner J, Yang P, Xu H. Extracting Systemic Anticancer Therapy and Response Information From Clinical Notes Following the RECIST Definition. JCO Clinical Cancer Informatics 2024, 8: e2300166. PMID: 38885475, DOI: 10.1200/cci.23.00166.Peer-Reviewed Original ResearchConceptsNatural language processingDomain-specific language modelsNatural language processing systemsInformation extraction systemRule-based moduleNarrative clinical textsNLP tasksEntity recognitionText normalizationAssertion classificationLanguage modelInformation extractionClinical textElectronic health recordsLearning-basedClinical notesLanguage processingTest setSystem performanceHealth recordsResponse extractionTime-consumingAnticancer therapyInformationAssessment informationRepurposing non-pharmacological interventions for Alzheimer's disease through link prediction on biomedical literature
Xiao Y, Hou Y, Zhou H, Diallo G, Fiszman M, Wolfson J, Zhou L, Kilicoglu H, Chen Y, Su C, Xu H, Mantyh W, Zhang R. Repurposing non-pharmacological interventions for Alzheimer's disease through link prediction on biomedical literature. Scientific Reports 2024, 14: 8693. PMID: 38622164, PMCID: PMC11018822, DOI: 10.1038/s41598-024-58604-8.Peer-Reviewed Original ResearchConceptsAlzheimer's diseaseManual therapy techniquesR-GCNKnowledge graphAD preventionNon-pharmacological interventionsBiomedical literatureGraph convolutional network modelKG embedding modelsTest setLink prediction modelIntegrated healthConvolutional network modelImprove cognitive functionHighest scoring candidatesDomain expertsEmbedding modelNon-pharmaceutical interventionsReal-world data analysisGround truthPrevent ADCognitive functionTherapy techniquesNetwork modelDiscovery patterns
2023
Repurposing Drugs for Alzheimer's Diseases through Link Prediction on Biomedical Literature
Xiao Y, Hou Y, Zhou H, Diallo G, Fiszman M, Wolfson J, Kilicoglu H, Chen Y, Xu H, Mantyh W, Zhang R. Repurposing Drugs for Alzheimer's Diseases through Link Prediction on Biomedical Literature. 2023, 00: 750-752. DOI: 10.1109/ichi57859.2023.00137.Peer-Reviewed Original ResearchAlzheimer's diseaseKnowledge graphKnowledge graph embedding modelsGraph convolutional network modelComputational drug repurposingGraph embedding modelsTest setConvolutional network modelBiomedical knowledge graphComprehensive knowledge graphDietary supplementsR-GCNEmbedding modelDrug repurposingLink predictionPrediction taskSemantic triplesNetwork modelAlzheimerBiomedical literatureNovel drugsRepurposed drugsGraph
2020
COVID-19 TestNorm: A tool to normalize COVID-19 testing names to LOINC codes
Dong X, Li J, Soysal E, Bian J, DuVall S, Hanchrow E, Liu H, Lynch K, Matheny M, Natarajan K, Ohno-Machado L, Pakhomov S, Reeves R, Sitapati A, Abhyankar S, Cullen T, Deckard J, Jiang X, Murphy R, Xu H. COVID-19 TestNorm: A tool to normalize COVID-19 testing names to LOINC codes. Journal Of The American Medical Informatics Association 2020, 27: 1437-1442. PMID: 32569358, PMCID: PMC7337837, DOI: 10.1093/jamia/ocaa145.Peer-Reviewed Original ResearchConceptsElectronic health recordsLOINC codesSecondary useRule-based toolOnline web applicationOpen-source packageCritical data elementsWeb applicationData networksEnd usersData elementsIndependent test setHealth recordsTest setKey challengesData normalizationCritical resourcesTest namesRoutine clinical practice dataCodeClinical practice dataCoronavirus disease 2019COVID-19 diagnostic testsToolDevelopers
2017
A hybrid approach to automatic de-identification of psychiatric notes
Lee H, Wu Y, Zhang Y, Xu J, Xu H, Roberts K. A hybrid approach to automatic de-identification of psychiatric notes. Journal Of Biomedical Informatics 2017, 75: s19-s27. PMID: 28602904, PMCID: PMC5705430, DOI: 10.1016/j.jbi.2017.06.006.Peer-Reviewed Original ResearchConceptsPsychiatric notesCEGS N-GRIDNatural language processing systemsRule-based componentTask Track 1Language processing systemRule-based approachDe-identificationDomain adaptationRich featuresProcessing systemHybrid approachN gridTrack 1Clinical dataTest setSystem performanceMachineHealth informationHybrid systemSystemClinical applicationTaskInformationData
2015
A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature
Tang B, Feng Y, Wang X, Wu Y, Zhang Y, Jiang M, Wang J, Xu H. A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature. Journal Of Cheminformatics 2015, 7: s8. PMID: 25810779, PMCID: PMC4331698, DOI: 10.1186/1758-2946-7-s1-s8.Peer-Reviewed Original ResearchMachine learning-based systemsConditional Random FieldsLearning-based systemEntity recognition systemSupport vector machineEntity recognitionRecognition systemF-measureChallenge organizersDrug Named Entity RecognitionVector machineStructured support vector machineMicro F-measureInformation extraction tasksWord representation featuresNamed Entity RecognitionTest setRandom fieldsPrimary evaluation measureBrown clusteringDocument indexingIndividual subtasksExtraction taskRandom IndexingBiomedical domain
2012
Clinical entity recognition using structural support vector machines with rich features
Tang B, Cao H, Wu Y, Jiang M, Xu H. Clinical entity recognition using structural support vector machines with rich features. 2012, 13-20. DOI: 10.1145/2390068.2390073.Peer-Reviewed Original ResearchStructural support vector machineClinical entity recognitionSupport vector machineConditional Random FieldsNatural language processingEntity recognitionVector machineRich featuresNLP challengeSequential labeling algorithmLarge margin theoryUnsupervised word representationsClinical text processingConcept extraction taskLess training timeHighest F-measureTest setI2b2 NLP challengeExtraction taskTypical machineNER taskClinical textTraining timeF-measureLanguage processing
2011
Detecting abbreviations in discharge summaries using machine learning methods.
Wu Y, Rosenbloom S, Denny J, Miller R, Mani S, Giuse D, Xu H. Detecting abbreviations in discharge summaries using machine learning methods. AMIA Annual Symposium Proceedings 2011, 2011: 1541-9. PMID: 22195219, PMCID: PMC3243185.Peer-Reviewed Original ResearchConceptsNatural language processingMachine learning methodsHighest F-measureF-measureClinical natural language processingLexical resourcesClinical abbreviationsTraining setPre-defined featuresRandom forest classifierDomain expertsML algorithmsML classifiersLanguage processingVoting schemeLearning methodsDischarge summariesForest classifierTest setClassifierCorpus-based methodSetResourcesAlgorithmAbbreviations