2024
Extracting Systemic Anticancer Therapy and Response Information From Clinical Notes Following the RECIST Definition
Zuo X, Kumar A, Shen S, Li J, Cong G, Jin E, Chen Q, Warner J, Yang P, Xu H. Extracting Systemic Anticancer Therapy and Response Information From Clinical Notes Following the RECIST Definition. JCO Clinical Cancer Informatics 2024, 8: e2300166. PMID: 38885475, DOI: 10.1200/cci.23.00166.Peer-Reviewed Original ResearchConceptsNatural language processingDomain-specific language modelsNatural language processing systemsInformation extraction systemRule-based moduleNarrative clinical textsNLP tasksEntity recognitionText normalizationAssertion classificationLanguage modelInformation extractionClinical textElectronic health recordsLearning-basedClinical notesLanguage processingTest setSystem performanceHealth recordsResponse extractionTime-consumingAnticancer therapyInformationAssessment information
2011
A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries
Jiang M, Chen Y, Liu M, Rosenbloom S, Mani S, Denny J, Xu H. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. Journal Of The American Medical Informatics Association 2011, 18: 601-606. PMID: 21508414, PMCID: PMC3168315, DOI: 10.1136/amiajnl-2011-000163.Peer-Reviewed Original ResearchConceptsEntity extraction systemCenter of InformaticsConcept extractionIntegrating BiologyEntity recognition moduleEntity recognition systemConditional Random FieldsOverall F-scoreSupport vector machineRule-based moduleAssertion classificationClassification taskRecognition moduleRecognition systemML algorithmsSemantic informationTraining dataClinical textNatural languageF-measureChallenge organizersF-scoreVector machineEvaluation scriptsTraining corpus