2024
Extracting Systemic Anticancer Therapy and Response Information From Clinical Notes Following the RECIST Definition
Zuo X, Kumar A, Shen S, Li J, Cong G, Jin E, Chen Q, Warner J, Yang P, Xu H. Extracting Systemic Anticancer Therapy and Response Information From Clinical Notes Following the RECIST Definition. JCO Clinical Cancer Informatics 2024, 8: e2300166. PMID: 38885475, DOI: 10.1200/cci.23.00166.Peer-Reviewed Original ResearchConceptsNatural language processingDomain-specific language modelsNatural language processing systemsInformation extraction systemRule-based moduleNarrative clinical textsNLP tasksEntity recognitionText normalizationAssertion classificationLanguage modelInformation extractionClinical textElectronic health recordsLearning-basedClinical notesLanguage processingTest setSystem performanceHealth recordsResponse extractionTime-consumingAnticancer therapyInformationAssessment informationLarge language models for biomedicine: foundations, opportunities, challenges, and best practices
Sahoo S, Plasek J, Xu H, Uzuner Ö, Cohen T, Yetisgen M, Liu H, Meystre S, Wang Y. Large language models for biomedicine: foundations, opportunities, challenges, and best practices. Journal Of The American Medical Informatics Association 2024, 31: 2114-2124. PMID: 38657567, PMCID: PMC11339493, DOI: 10.1093/jamia/ocae074.Peer-Reviewed Original ResearchNatural language processingPrompt tuningNLP applicationsLanguage modelState-of-the-art performanceNLP practitionersNatural language processing applicationsBiomedical NLP applicationsPre-training datasetNatural language understandingNeural network architecture modelNatural language generationBiomedical informatics communityNetwork architecture modelAmerican Medical Informatics Association (AMIAPrompt-tuningFew-shotZero-ShotNLP challengeNLP tasksReinforcement learningHuman feedbackLanguage generationLanguage understandingEvaluation metrics
2022
Natural Language Processing
Xu H, Roberts K. Natural Language Processing. Cognitive Informatics In Biomedicine And Healthcare 2022, 213-234. DOI: 10.1007/978-3-031-09108-7_7.Peer-Reviewed Original ResearchNatural language processingLanguage processingElectronic health recordsBiomedical domainBiomedical natural language processingCommon NLP tasksNarrative textNLP tasksBiomedical articlesClinical documentsNLP fieldTextHealth recordsLarge amountBasic conceptsBibliographic databasesProcessingTaskArticleDocumentsDomainChapterDatabaseInformationAttention
2020
Relation Extraction from Clinical Narratives Using Pre-trained Language Models.
Wei Q, Ji Z, Si Y, Du J, Wang J, Tiryaki F, Wu S, Tao C, Roberts K, Xu H. Relation Extraction from Clinical Narratives Using Pre-trained Language Models. AMIA Annual Symposium Proceedings 2020, 2019: 1236-1245. PMID: 32308921, PMCID: PMC7153059.Peer-Reviewed Original ResearchConceptsPre-trained language modelsNatural language processingLanguage modelRE tasksNLP tasksClinical narrativesRecent deep learning methodsDeep learning methodsClinical NLP tasksRelation extraction taskTraditional word embeddingsTraditional machineExtraction taskArt performanceRelation extractionBERT modelLanguage processingLearning methodsWord embeddingsShared TaskPrevious stateBiomedical literatureDifferent implementationsTaskOpen domain
2019
Enhancing clinical concept extraction with contextual embeddings
Si Y, Wang J, Xu H, Roberts K. Enhancing clinical concept extraction with contextual embeddings. Journal Of The American Medical Informatics Association 2019, 26: 1297-1304. PMID: 31265066, PMCID: PMC6798561, DOI: 10.1093/jamia/ocz096.Peer-Reviewed Original ResearchConceptsClinical concept extractionContextual embeddingsNatural language processing tasksTraditional word embeddingsTraditional word representationsClinical NLP tasksLanguage processing tasksSemantic informationWord embedding methodsLarge language modelsArt performanceConcept extraction taskSemEval 2014Word representationsNLP tasksLanguage modelWord embeddingsProcessing tasksNeural network-based representationI2b2 2010Concept extractionTaskLarge clinical corpusClinical corpusNetwork-based representation