2023
Apoptosis recognition receptors regulate skin tissue repair in mice
Justynski O, Bridges K, Krause W, Forni M, Phan Q, Sandoval-Schaefer T, Carter K, King D, Hsia H, Gazes M, Vyce S, Driskell R, Miller-Jensen K, Horsley V. Apoptosis recognition receptors regulate skin tissue repair in mice. ELife 2023, 12: e86269. PMID: 38127424, PMCID: PMC10735221, DOI: 10.7554/elife.86269.Peer-Reviewed Original Research
2020
Self-Assembled Nanomaterials for Chronic Skin Wound Healing
Kang HJ, Chen N, Dash BC, Hsia HC, Berthiaume F. Self-Assembled Nanomaterials for Chronic Skin Wound Healing. Advances In Wound Care 2020, 10: 221-233. PMID: 32487014, PMCID: PMC8024239, DOI: 10.1089/wound.2019.1077.Peer-Reviewed Original ResearchConceptsSelf-assembled nanomaterialsDrug delivery capabilityNanomaterialsWound healing applicationsTunable mechanicsExcellent biocompatibilityMultifunctional propertiesPhysiochemical propertiesMultiple functionalitiesDelivery systemComplex multifunctional structuresDelivery capabilityHealing applicationsWound dressingsPropertiesMultifunctional structuresLow costChronic wound healing applicationsBiocompatibilityGrowth factor delivery systemEffective wound therapyMaterialsDegradationMechanismStructureA Dense Fibrillar Collagen Scaffold Differentially Modulates Secretory Function of iPSC-Derived Vascular Smooth Muscle Cells to Promote Wound Healing
Dash BC, Setia O, Gorecka J, Peyvandi H, Duan K, Lopes L, Nie J, Berthiaume F, Dardik A, Hsia HC. A Dense Fibrillar Collagen Scaffold Differentially Modulates Secretory Function of iPSC-Derived Vascular Smooth Muscle Cells to Promote Wound Healing. Cells 2020, 9: 966. PMID: 32295218, PMCID: PMC7226960, DOI: 10.3390/cells9040966.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsSmooth muscle cellsSecretory functionHuman-induced pluripotent stem cellsParacrine secretionMuscle cellsCollagen fibrillar densitiesSecretory factorsVascular regenerationWound healingTissue-engineered vascular graftsHealingVascular graftsStem cellsPluripotent stem cellsCollagen scaffoldsScaffold propertiesScaffold materialsCellsPromising strategyDisease modelingFibrillar densityRegenerative wound healingCytokinesGraftInduced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing
Gorecka J, Gao X, Fereydooni A, Dash BC, Luo J, Lee SR, Taniguchi R, Hsia HC, Qyang Y, Dardik A. Induced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing. Regenerative Medicine 2020, 15: 1277-1293. PMID: 32228292, PMCID: PMC7304438, DOI: 10.2217/rme-2019-0086.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsMuscle cellsDiabetic wound healingWound healingPro-angiogenic cytokinesMurine AdiposeStem cellsType macrophagesCollagen scaffoldsCultured mediumM2-type macrophagesCellsNumber of totalNew candidatesAngiogenesisNude miceDiabetic woundsPromising new candidateScaffoldsHealingCytokinesExpressionSecreteWoundsAdipose
2019
Incisional Negative Pressure Wound Therapy Augments Perfusion and Improves Wound Healing in a Swine Model Pilot Study.
Shah A, Sumpio BJ, Tsay C, Swallow M, Dash B, Thorn SL, Sinusas AJ, Koo A, Hsia HC, Au A. Incisional Negative Pressure Wound Therapy Augments Perfusion and Improves Wound Healing in a Swine Model Pilot Study. Annals Of Plastic Surgery 2019, 82: s222-s227. PMID: 30855392, DOI: 10.1097/sap.0000000000001842.Peer-Reviewed Original ResearchConceptsNegative pressure wound therapyVascular endothelial growth factorClosed woundsUse of NPWTVEGF expressionSurgical wound sitePressure wound therapyMale Yorkshire pigsEnzyme-linked immunosorbent assay resultsEnzyme-linked immunosorbent assayEndothelial growth factorExcisional wound modelImmunosorbent assay resultsControl dressingsPrimary sutureScar evaluationImmunohistochemistry stainingIncision siteNPWT dressingsWound therapyAngiogenesis markersTreatment groupsAppearance of woundsOpen woundsWound healing modelThe potential and limitations of induced pluripotent stem cells to achieve wound healing
Gorecka J, Kostiuk V, Fereydooni A, Gonzalez L, Luo J, Dash B, Isaji T, Ono S, Liu S, Lee SR, Xu J, Liu J, Taniguchi R, Yastula B, Hsia HC, Qyang Y, Dardik A. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Research & Therapy 2019, 10: 87. PMID: 30867069, PMCID: PMC6416973, DOI: 10.1186/s13287-019-1185-1.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsChronic woundsCell therapyStem cellsDiabetic foot ulcersCell typesWound healingInvasive harvesting techniquesAdult-derived stem cellsNormal skin architecturePluripotent stem cellsLimb ischemiaFoot ulcersLimited cell survivalSafety profileOnly cell typeAnimal modelsHuman studiesPotential treatmentPhysiologic responsesHealthy skinImmune rejectionAdvanced therapiesTranslational potentialUse of iPSCsSystemic factorsMouse Model of Pressure Ulcers After Spinal Cord Injury.
Kumar S, Tan Y, Yarmush ML, Dash BC, Hsia HC, Berthiaume F. Mouse Model of Pressure Ulcers After Spinal Cord Injury. Journal Of Visualized Experiments 2019 PMID: 30907872, DOI: 10.3791/58188.Peer-Reviewed Original ResearchConceptsSpinal cord injuryLevel of SCIPressure ulcersSCI miceCord injuryMouse modelComplete spinal cord injuryImpact of SCITraumatic spinal cord injuryComplete spinal cord transectionSpinal cord transectionAdult male miceRelevant mouse modelCord transectionIschemic areaMale miceTissue edemaPU developmentTherapeutic approachesAnimal modelsBony prominencesSuch woundsMiceSoft tissueHealing
2018
Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair
Shook BA, Wasko RR, Rivera-Gonzalez GC, Salazar-Gatzimas E, López-Giráldez F, Dash BC, Muñoz-Rojas AR, Aultman KD, Zwick RK, Lei V, Arbiser JL, Miller-Jensen K, Clark DA, Hsia HC, Horsley V. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 2018, 362 PMID: 30467144, PMCID: PMC6684198, DOI: 10.1126/science.aar2971.Peer-Reviewed Original ResearchConceptsDifferential gene expressionAdipocyte precursorsExtracellular matrix moleculesGene expressionTransplantation assaysMatrix moleculesFactor C.Factor 1Insulin-like growth factor-1Cell populationsTissue resilienceDistinct subpopulationsGrowth factor-1Profibrotic cellsTissue repairMultiple mouse modelsECM depositionSkin repairTissue dysfunctionProliferationMouse modelMyofibroblastsWoundingMacrophagesRepairImpact of Complete Spinal Cord Injury on Healing of Skin Ulcers in Mouse Models
Kumar S, Yarmush ML, Dash BC, Hsia HC, Berthiaume F. Impact of Complete Spinal Cord Injury on Healing of Skin Ulcers in Mouse Models. Journal Of Neurotrauma 2018, 35: 815-824. PMID: 29160147, DOI: 10.1089/neu.2017.5405.Peer-Reviewed Original ResearchConceptsComplete spinal cord injurySpinal cord injuryPressure ulcersSCI miceSCI groupCord injuryMouse modelControl groupImpact of SCIExcisional woundsTraumatic spinal cord injuryAlpha-smooth muscle actinAdult male miceRelevant mouse modelLower blood vessel densitySuitable animal modelBlood vessel densityFull-thickness excisional woundsDynamics of skinBacks of miceIschemic areaMale miceTissue edemaSkin ulcersAnimal models
2017
Fibroblast growth factor receptor is a mechanistic link between visceral adiposity and cancer
Chakraborty D, Benham V, Bullard B, Kearney T, Hsia HC, Gibbon D, Demireva EY, Lunt SY, Bernard JJ. Fibroblast growth factor receptor is a mechanistic link between visceral adiposity and cancer. Oncogene 2017, 36: 6668-6679. PMID: 28783178, PMCID: PMC5709202, DOI: 10.1038/onc.2017.278.Peer-Reviewed Original ResearchConceptsAdipose tissueFibroblast growth factor-2 levelsGrowth factor-2 levelsFGFR-1Cancer prevention strategiesEpithelial cellsExcess adipose tissueTumor formationFactor 2 levelsVisceral adipose tissueNovel ex vivo systemSkin tumor formationObese human donorsNon-tumorigenic epithelial cellsSoft agarEx vivo systemGrowth factor receptorAdjuvant therapyEpithelial cell growthVisceral adiposityLevels of FGF2Obese individualsEpidemiological evidenceFibroblast growth factor receptorCancer risk
2015
SDF‐1 liposomes promote sustained cell proliferation in mouse diabetic wounds
Olekson MA, Faulknor R, Bandekar A, Sempkowski M, Hsia HC, Berthiaume F. SDF‐1 liposomes promote sustained cell proliferation in mouse diabetic wounds. Wound Repair And Regeneration 2015, 23: 711-723. PMID: 26110250, DOI: 10.1111/wrr.12334.Peer-Reviewed Original ResearchConceptsStromal cell-derived factor-1Acellular dermisCell-derived factor-1Cell proliferationRestoration of skinChronic skin woundsImproved wound closurePersistent cell proliferationCommon complicationGranulation tissue thicknessIschemic tissueProper revascularizationDay 28Day 21Diabetic woundsSuch woundsWound closureSkin woundsDermisFactor 1Tissue thicknessWoundsProliferation
2014
The fate of internalized α5 integrin is regulated by matrix-capable fibronectin
Hsia HC, Nair MR, Corbett SA. The fate of internalized α5 integrin is regulated by matrix-capable fibronectin. Journal Of Surgical Research 2014, 191: 268-279. PMID: 25062814, PMCID: PMC4160403, DOI: 10.1016/j.jss.2014.05.084.Peer-Reviewed Original ResearchConceptsFibronectin matrix assemblyΑ5 integrinFibronectin matrixMatrix assemblySpecific lysine residuesMouse embryo fibroblast cellsEmbryo fibroblast cellsExtracellular spaceIntegrin turnoverCytoplasmic tailTissue-remodeling processesAbsence of fibronectinInternalized receptorsLysine residuesReceptor turnoverIntegrinsTissue remodelingUbiquitinationProtein levelsChinese hamsterFibroblast cellsFibronectin dimersWound repairRapid degradationFate
2006
Modulation of Cell–Fibronectin Matrix Interactions during Tissue Repair
Midwood KS, Mao Y, Hsia HC, Valenick LV, Schwarzbauer JE. Modulation of Cell–Fibronectin Matrix Interactions during Tissue Repair. Journal Of Investigative Dermatology Symposium Proceedings 2006, 11: 73-78. PMID: 17069013, DOI: 10.1038/sj.jidsymp.5650005.Peer-Reviewed Original ResearchConceptsFocal adhesion kinaseExtracellular matrixAlpha 4 beta 1Fibronectin matrixActin stress fibersECM protein tenascinAlpha v beta 3Cell surface receptorsFibrin-fibronectin matrixOrganization of fibronectinAlpha 5 beta 1 integrin receptorBeta 3 integrinActin cytoskeletonBeta 1 integrin receptorsEnvironmental signalsMotile phenotypeTransmembrane proteoglycansAdhesion kinaseRho GTPaseRho signalingWound provisional matrixBeta 1Stress fibersIntegrin functionMultiple intracellular
2005
Fibronectin fragmentation promotes α4β1 integrin-mediated contraction of a fibrin–fibronectin provisional matrix
Valenick LV, Hsia HC, Schwarzbauer JE. Fibronectin fragmentation promotes α4β1 integrin-mediated contraction of a fibrin–fibronectin provisional matrix. Experimental Cell Research 2005, 309: 48-55. PMID: 15992798, DOI: 10.1016/j.yexcr.2005.05.024.Peer-Reviewed Original ResearchMeet the Tenascins: Multifunctional and Mysterious*
Hsia HC, Schwarzbauer JE. Meet the Tenascins: Multifunctional and Mysterious*. Journal Of Biological Chemistry 2005, 280: 26641-26644. PMID: 15932878, DOI: 10.1074/jbc.r500005200.Peer-Reviewed Original Research
2004
Coregulation of Fibronectin Signaling and Matrix Contraction by Tenascin-C and Syndecan-4
Midwood KS, Valenick LV, Hsia HC, Schwarzbauer JE. Coregulation of Fibronectin Signaling and Matrix Contraction by Tenascin-C and Syndecan-4. Molecular Biology Of The Cell 2004, 15: 5670-5677. PMID: 15483051, PMCID: PMC532045, DOI: 10.1091/mbc.e04-08-0759.Peer-Reviewed Original ResearchConceptsSyndecan-4 functionsSyndecan-4Actin stress fiber formationFocal adhesion kinaseMatrix contractionStress fiber formationExtracellular matrix proteinsEfficient tissue repairEffects of tenascinProvisional matrixTissue repairHeparan sulfate proteoglycanAdhesion kinaseCell spreadingSignaling pathwaysMatrix proteinsFibronectin signalingThree-dimensional fibrinExtracellular matrixFiber formationSulfate proteoglycanCell interactionsFibroblast morphologyTenascinFibroblast response