1999
Role of the Epstein-Barr Virus Rta Protein in Activation of Distinct Classes of Viral Lytic Cycle Genes
Ragoczy T, Miller G. Role of the Epstein-Barr Virus Rta Protein in Activation of Distinct Classes of Viral Lytic Cycle Genes. Journal Of Virology 1999, 73: 9858-9866. PMID: 10559298, PMCID: PMC113035, DOI: 10.1128/jvi.73.12.9858-9866.1999.Peer-Reviewed Original ResearchConceptsLytic cycle genesRaji cellsEpstein–Barr virus Rta proteinEpstein-Barr virus (EBV) lytic cycleViral targetsLytic cycleVirus lytic cycleLymphoma cell line RajiBurkitt's lymphoma cell line RajiBZLF1 expressionB cell linesCell line RajiBRLF1 geneImmediate early genesInhibitory effectCycle genesViral lytic cycle genesEBVRta proteinViral genesBLRF2CellsExpressionTransactivation functionLate genesKinetics of Kaposi’s Sarcoma-Associated Herpesvirus Gene Expression
Sun R, Lin S, Staskus K, Gradoville L, Grogan E, Haase A, Miller G. Kinetics of Kaposi’s Sarcoma-Associated Herpesvirus Gene Expression. Journal Of Virology 1999, 73: 2232-2242. PMID: 9971806, PMCID: PMC104468, DOI: 10.1128/jvi.73.3.2232-2242.1999.Peer-Reviewed Original ResearchConceptsHerpesvirus gene expressionKaposi's sarcoma-associated herpesvirusSarcoma-associated herpesvirusGene expressionLytic cycleEarly genesVIL-6Cell linesKSHV DNA replicationG protein-coupled receptorsProtein-coupled receptorsSingle-cell assaysPrimary effusion lymphoma cell linesImmediate early genesPAN RNADNA replicationEpstein-Barr virus BZLF1Nuclear RNALate genesBovine herpesvirus 4KS biopsiesPEL cell linesVBcl-2Positional homologueKinetic classes
1998
A viral gene that activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus
Sun R, Lin S, Gradoville L, Yuan Y, Zhu F, Miller G. A viral gene that activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 10866-10871. PMID: 9724796, PMCID: PMC27987, DOI: 10.1073/pnas.95.18.10866.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceCloning, MolecularDNA PrimersDNA, ComplementaryGene Expression Regulation, NeoplasticGenes, ViralHerpesvirus 4, HumanHerpesvirus 8, HumanHumansMolecular Sequence DataSarcoma, KaposiSequence Homology, Amino AcidTranscription, GeneticTumor Cells, CulturedVirus ActivationConceptsEpstein-Barr virusKaposi's sarcoma-associated herpesvirusSarcoma-associated herpesvirusSmall viral capsid antigenPathogenesis of KSHVLytic cycle gene expressionViral capsid antigenLatent viral genomeCapsid antigenLytic cycle genesInterleukin-6Immediate early genesViral cytokineEarly lytic genesLytic genesHerpesvirusVirusViral genesViral genomeExpressionGene expressionCytokinesPathogenesisCycle genesGenes
1997
The Locus of Epstein–Barr Virus Terminal Repeat Processing Is Bound with Enhanced Affinity by Sp1 and Sp3
Spain T, Sun R, Miller G. The Locus of Epstein–Barr Virus Terminal Repeat Processing Is Bound with Enhanced Affinity by Sp1 and Sp3. Virology 1997, 237: 137-147. PMID: 9344916, DOI: 10.1006/viro.1997.8770.Peer-Reviewed Original ResearchConceptsRecombination eventsRepeat binding proteinMinimal binding siteAntibody supershift assaysRepeat processingSp1 sitesCellular proteinsLarge internal repeatRecombinogenic regionsInternal repeatsSp1Supershift assaysRecombinant proteinsTerminal repeatBinding proteinLytic cycle inductionEBV lytic cycle inductionCycle inductionProteinAffinity of bindingBinding sitesRepeatsSite 1DNASp3
1990
Topological Effects of EBNA 1 on oriP
Orlowski R, Miller G. Topological Effects of EBNA 1 on oriP. Advances In Experimental Medicine And Biology 1990, 278: 115-124. PMID: 1963028, DOI: 10.1007/978-1-4684-5853-4_12.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, MonoclonalAntigens, ViralBase SequenceBinding SitesDeoxyribonuclease IV (Phage T4-Induced)DNA, SuperhelicalDNA, ViralEndodeoxyribonucleasesEpstein-Barr Virus Nuclear AntigensEscherichia coliEscherichia coli ProteinsGenes, ViralHerpesvirus 4, HumanMolecular Sequence DataNucleic Acid ConformationPlasmidsRecombinant ProteinsRepetitive Sequences, Nucleic AcidTransformation, Bacterial
1988
Polymorphisms of the region of the Epstein-Barr virus genome which disrupts latency
Jenson H, Miller G. Polymorphisms of the region of the Epstein-Barr virus genome which disrupts latency. Virology 1988, 165: 549-564. PMID: 2841800, DOI: 10.1016/0042-6822(88)90599-5.Peer-Reviewed Original Research
1984
Epstein-Barr virus with heterogeneous DNA disrupts latency
Miller G, Rabson M, Heston L. Epstein-Barr virus with heterogeneous DNA disrupts latency. Journal Of Virology 1984, 50: 174-182. PMID: 6321789, PMCID: PMC255597, DOI: 10.1128/jvi.50.1.174-182.1984.Peer-Reviewed Original ResearchConceptsEpstein-Barr virusLatent Epstein-Barr virusEarly antigenRaji cellsViral synthesisX50-7 cellsHet DNABurkitt lymphoma linesActivated virusEBV DNANeonatal lymphocytesEBV replicationEBV sequencesX50-7Restriction endonuclease polymorphismAntigenLymphoma linesVirusRare variantsDefective virusLower ratesSuperinfectionCell spreadBiological effectsCellsRegions of the EBV genome involved in latency and lymphocyte immortalization.
Miller G. Regions of the EBV genome involved in latency and lymphocyte immortalization. Medical Virology 1984, 30: 107-28. PMID: 6087408.Peer-Reviewed Original ResearchAnimalsAntigens, ViralB-LymphocytesCell NucleusCell Transformation, ViralChildChild, PreschoolChromosome DeletionDNA, ViralEpstein-Barr Virus Nuclear AntigensFemaleGenes, ViralHerpesvirus 4, HumanHumansLymphomaMaleRepetitive Sequences, Nucleic AcidRNA, ViralTranscription, GeneticTumor Virus InfectionsVirionVirus Replication
1983
Central-Nervous-System Lymphoma Related to Epstein–Barr Virus
Hochberg F, Miller G, Schooley R, Hirsch M, Feorino P, Henle W. Central-Nervous-System Lymphoma Related to Epstein–Barr Virus. New England Journal Of Medicine 1983, 309: 745-748. PMID: 6310394, DOI: 10.1056/nejm198309293091301.Peer-Reviewed Original ResearchConceptsEpstein-Barr virusCentral nervous systemSystem lymphomaPrimary lymphomaNervous systemEpstein-Barr virus-specific antibodiesEpstein-Barr virus infectionEpstein-Barr virus genomeRecent primary infectionAdjacent normal brain tissueVirus-specific antibodiesNormal brain tissueSystemic lymphomaBamHI K fragmentAdditional patientsSerologic evidenceOngoing infectionPrimary infectionVirus infectionLymphomaBrain tissueTumor tissueSerum samplesInfectionVirus
1981
Copy number and location of Epstein-Barr viral genomes in neonatal human lymphocytes transformed after separation by size and treatment with mitogens
Anvret M, Miller G. Copy number and location of Epstein-Barr viral genomes in neonatal human lymphocytes transformed after separation by size and treatment with mitogens. Virology 1981, 111: 47-55. PMID: 6263010, DOI: 10.1016/0042-6822(81)90652-8.Peer-Reviewed Original ResearchConceptsNeonatal human lymphocytesEBV DNACell linesStaphylococcus aureusEpstein-Barr viral genomeHuman lymphocytesEBV DNA copiesEpstein-Barr virusPurified B lymphocytesFresh umbilical cordsB95-8 strainFicoll-Hypaque gradientDifferent cell linesEB virusMedian numberUmbilical cordB lymphocytesViral infectionViral genomeLymphocytesLipopolysaccharideSmall cell fractionPhysiologic stateTime of exposureCell fractionGenome of a mononucleosis epstein-barr virus contains DNA fragments previously regarded to be unique to Burkitt's lymphoma isolates
Fischer D, Miller G, Gradoville L, Heston L, Weststrate M, Maris W, Wright J, Brandsma J, Summers W. Genome of a mononucleosis epstein-barr virus contains DNA fragments previously regarded to be unique to Burkitt's lymphoma isolates. Cell 1981, 24: 543-553. PMID: 6263500, DOI: 10.1016/0092-8674(81)90345-7.Peer-Reviewed Original ResearchConceptsBurkitt's lymphomaB95-8Infectious mononucleosisUncomplicated infectious mononucleosisEpstein-Barr virusSalivary isolatesEBV infectionDisease manifestationsLymphomaMononucleosisPatientsEBVRestriction enzyme analysisVirusMajor insertionC fragmentEnzyme analysisHr-1IsolatesInfectionDeletionAvailable virus