2023
Nova proteins direct synaptic integration of somatostatin interneurons through activity-dependent alternative splicing
Ibrahim L, Wamsley B, Alghamdi N, Yusuf N, Sevier E, Hairston A, Sherer M, Jaglin X, Xu Q, Guo L, Jamayran A, Favuzzi E, Yuan Y, Dimidschstein J, Darnell R, Fishell G. Nova proteins direct synaptic integration of somatostatin interneurons through activity-dependent alternative splicing. ELife 2023, 12: e86842. PMID: 37347149, PMCID: PMC10287156, DOI: 10.7554/elife.86842.Peer-Reviewed Original ResearchConceptsAlternative splicingSomatostatin interneuronsFamily of RNA-binding proteinsCortical circuit formationRNA-binding proteinsFamily of proteinsActivity-dependent alternative splicingNova familyMouse somatosensory cortexNOVA proteinsBear populationInhibitory cellsAxon formationSplicingSynaptic integrationGene expressionInterneuronsCircuit formationCortical circuitryActivity-dependentSomatosensory cortexSynapse formationBrain developmentSynaptic functionProtein
2022
Microglia contribute to the postnatal development of cortical somatostatin-positive inhibitory cells and to whisker-evoked cortical activity
Gesuita L, Cavaccini A, Argunsah A, Favuzzi E, Ibrahim L, Stachniak T, De Gennaro M, Utz S, Greter M, Karayannis T. Microglia contribute to the postnatal development of cortical somatostatin-positive inhibitory cells and to whisker-evoked cortical activity. Cell Reports 2022, 40: 111209. PMID: 35977514, PMCID: PMC9396528, DOI: 10.1016/j.celrep.2022.111209.Peer-Reviewed Original Research
2020
Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans
Vormstein-Schneider D, Lin J, Pelkey K, Chittajallu R, Guo B, Arias-Garcia M, Allaway K, Sakopoulos S, Schneider G, Stevenson O, Vergara J, Sharma J, Zhang Q, Franken T, Smith J, Ibrahim L, Mastro K, Sabri E, Huang S, Favuzzi E, Burbridge T, Xu Q, Guo L, Vogel I, Sanchez V, Saldi G, Gorissen B, Yuan X, Zaghloul K, Devinsky O, Sabatini B, Batista-Brito R, Reynolds J, Feng G, Fu Z, McBain C, Fishell G, Dimidschstein J. Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. Nature Neuroscience 2020, 23: 1629-1636. PMID: 32807948, PMCID: PMC8015416, DOI: 10.1038/s41593-020-0692-9.Peer-Reviewed Original ResearchConceptsRecombinant adeno-associated virus vectorAdeno-associated virus vectorVasoactive intestinal peptide-expressing interneuronsClasses of neuronsGene regulatory elementsGene SCN1AViral toolsNeuronal subtypesCerebral cortexViral manipulationTherapeutic interventionsVertebrate speciesNon-human primatesVirus vectorsGene expressionInterneuronsBrain regionsCircuit manipulationsExquisite specificityParvalbuminRegulatory landscapeNeuronsSCN1ASubtypesMice
2019
Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits
Favuzzi E, Deogracias R, Marques-Smith A, Maeso P, Jezequel J, Exposito-Alonso D, Balia M, Kroon T, Hinojosa A, F Maraver E, Rico B. Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits. Science 2019, 363: 413-417. PMID: 30679375, DOI: 10.1126/science.aau8977.Peer-Reviewed Original ResearchConceptsCortical inhibitory circuitsInhibitory circuitsClasses of GABAergic interneuronsInvestigate transcriptional dynamicsClasses of interneuronsConnectivity patternsAxon initial segmentGABAergic interneuronsMammalian cerebral cortexTranscriptional dynamicsCortical interneuronsPyramidal cellsSynapse specificityPostnatal developmentInterneuron diversityInterneuronsCerebral cortexMolecular mechanismsConnectivity motifsSynaptic moleculesBrain functionMolecular programsNeuronal connectivityInformation processingFunctional networks
2018
Rbfox1 Mediates Cell-type-Specific Splicing in Cortical Interneurons
Wamsley B, Jaglin X, Favuzzi E, Quattrocolo G, Nigro M, Yusuf N, Khodadadi-Jamayran A, Rudy B, Fishell G. Rbfox1 Mediates Cell-type-Specific Splicing in Cortical Interneurons. Neuron 2018, 100: 846-859.e7. PMID: 30318414, PMCID: PMC6541232, DOI: 10.1016/j.neuron.2018.09.026.Peer-Reviewed Original Research
2017
Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican
Favuzzi E, Marques-Smith A, Deogracias R, Winterflood C, Sánchez-Aguilera A, Mantoan L, Maeso P, Fernandes C, Ewers H, Rico B. Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican. Neuron 2017, 95: 639-655.e10. PMID: 28712654, DOI: 10.1016/j.neuron.2017.06.028.Peer-Reviewed Original ResearchConceptsPV+ cellsPerineuronal netsInterneuron plasticityInterneuron functionActivity-dependent neuronal plasticityParvalbumin interneuron functionPNN proteinAMPA receptorsPotassium channelsNeuronal plasticityNervous systemBrevican levelsInterneuronsMolecular programsSynaptic formCellular modificationsMolecular mechanismsCellsBrevican