Featured Publications
Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase
Zhang Y, Corbett E, Wu S, Schatz DG. Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase. The EMBO Journal 2020, 39: e105857. PMID: 32945578, PMCID: PMC7604617, DOI: 10.15252/embj.2020105857.Peer-Reviewed Original ResearchConceptsTarget site DNASite DNARAG1/RAG2 recombinaseSuppression of transpositionCryo-electron microscopyStrand transfer complexAntigen receptor genesDomesticated transposaseTarget DNARAG recombinaseEvolutionary adaptationPaste transpositionStructural basisTransposition activityMechanistic principlesFunctional assaysTransposon endDNAReceptor geneBase unstackingDomesticationTransposaseRecombinaseAdaptive immunityFinal stepHMCES protects immunoglobulin genes specifically from deletions during somatic hypermutation
Wu L, Shukla V, Yadavalli AD, Dinesh RK, Xu D, Rao A, Schatz DG. HMCES protects immunoglobulin genes specifically from deletions during somatic hypermutation. Genes & Development 2022, 36: 433-450. PMID: 35450882, PMCID: PMC9067407, DOI: 10.1101/gad.349438.122.Peer-Reviewed Original ResearchStructures of a RAG-like transposase during cut-and-paste transposition
Liu C, Yang Y, Schatz DG. Structures of a RAG-like transposase during cut-and-paste transposition. Nature 2019, 575: 540-544. PMID: 31723264, PMCID: PMC6872938, DOI: 10.1038/s41586-019-1753-7.Peer-Reviewed Original ResearchConceptsCryo-electron microscopy structureC-terminal tailUnique structural elementsStrand transfer complexEukaryotic cutEvolutionary progenitorsMicroscopy structureRAG recombinasePaste transpositionApo enzymeSubstrate DNAHelicoverpa zeaConformational changesEarly stepsTransposaseAdaptive immune systemDNATarget siteTransposonTarget DNAPivotal roleActive siteEnzymeTransposition processEssential component
2021
RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination
Gan T, Wang Y, Liu Y, Schatz DG, Hu J. RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination. Cell Reports 2021, 37: 109824. PMID: 34644584, PMCID: PMC8783374, DOI: 10.1016/j.celrep.2021.109824.Peer-Reviewed Original ResearchSarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity is required for V(D)J recombination
Chen CC, Chen BR, Wang Y, Curman P, Beilinson HA, Brecht RM, Liu CC, Farrell RJ, de Juan-Sanz J, Charbonnier LM, Kajimura S, Ryan TA, Schatz DG, Chatila TA, Wikstrom JD, Tyler JK, Sleckman BP. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity is required for V(D)J recombination. Journal Of Experimental Medicine 2021, 218: e20201708. PMID: 34033676, PMCID: PMC8155808, DOI: 10.1084/jem.20201708.Peer-Reviewed Original ResearchConceptsRAG2 gene expressionSarco/endoplasmic reticulum Ca2Gene expressionEndoplasmic reticulum Ca2ER Ca2ER transmembrane proteinExpression of SERCA3Mature B cellsER lumenCytosolic Ca2Transmembrane proteinCRISPR/PreB cellsDNA cleavageB cellsReticulum Ca2SERCA proteinATPase activityProteinProfound blockATP2A2 mutationsRAG1RecombinationStructural visualization of transcription activated by a multidrug-sensing MerR family regulator
Yang Y, Liu C, Zhou W, Shi W, Chen M, Zhang B, Schatz DG, Hu Y, Liu B. Structural visualization of transcription activated by a multidrug-sensing MerR family regulator. Nature Communications 2021, 12: 2702. PMID: 33976201, PMCID: PMC8113463, DOI: 10.1038/s41467-021-22990-8.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsBacterial ProteinsBase SequenceBinding SitesCloning, MolecularCryoelectron MicroscopyCrystallography, X-RayDNA, BacterialDNA-Binding ProteinsDNA-Directed RNA PolymerasesEscherichia coliGene ExpressionGene Expression Regulation, BacterialGenetic VectorsModels, MolecularNucleic Acid ConformationPromoter Regions, GeneticProtein BindingProtein Conformation, alpha-HelicalProtein Conformation, beta-StrandProtein Interaction Domains and MotifsRecombinant ProteinsTranscription Elongation, GeneticTranscription Initiation, GeneticConceptsMerR family regulatorsFamily regulatorCryo-electron microscopy structureBacterial RNA polymerase holoenzymeRegulation of transcriptionRNA polymerase holoenzymePromoter openingTranscription regulationMicroscopy structureTranscription initiationPolymerase holoenzymeRNA elongationTranscriptional regulatorsMerR familyDNA remodelingSpacer DNAPromoter recognitionPromoter elementsCellular signalsSpacer promoterInitial transcriptionTranscription processTranscriptionPromoterRegulator
2019
TET enzymes augment activation-induced deaminase (AID) expression via 5-hydroxymethylcytosine modifications at the Aicda superenhancer
Lio CJ, Shukla V, Samaniego-Castruita D, González-Avalos E, Chakraborty A, Yue X, Schatz DG, Ay F, Rao A. TET enzymes augment activation-induced deaminase (AID) expression via 5-hydroxymethylcytosine modifications at the Aicda superenhancer. Science Immunology 2019, 4 PMID: 31028100, PMCID: PMC6599614, DOI: 10.1126/sciimmunol.aau7523.Peer-Reviewed Original ResearchMeSH Keywords5-MethylcytosineAnimalsBasic-Leucine Zipper Transcription FactorsB-LymphocytesCell DifferentiationCells, CulturedCytidine DeaminaseDioxygenasesDNA DemethylationDNA-Binding ProteinsGene Expression RegulationGenetic LociImmunoglobulin Class SwitchingLymphocyte ActivationMiceMice, TransgenicPrimary Cell CultureProto-Oncogene ProteinsResponse ElementsConceptsClass switch recombinationTranscription factorsChromatin accessibilityDNA demethylationBasic region-leucine zipper (bZIP) transcription factorsBZIP transcription factorsZipper transcription factorKey transcription factorEpigenetic marksTET enzymesEnhancer dynamicsGenomic regionsDeficient B cellsMurine B cellsEnhancer activityEnzyme essentialEnhancer elementsSwitch recombinationActivation-induced deaminase (AID) expressionAID expressionB cellsSuperenhancersTetDemethylationExpression
2017
Immature Lymphocytes Inhibit Rag1 and Rag2 Transcription and V(D)J Recombination in Response to DNA Double-Strand Breaks
Fisher MR, Rivera-Reyes A, Bloch NB, Schatz DG, Bassing CH. Immature Lymphocytes Inhibit Rag1 and Rag2 Transcription and V(D)J Recombination in Response to DNA Double-Strand Breaks. The Journal Of Immunology 2017, 198: 2943-2956. PMID: 28213501, PMCID: PMC5360515, DOI: 10.4049/jimmunol.1601639.Peer-Reviewed Original ResearchConceptsDNA double-strand breaksDNA damage responseRAG1/RAG2Double-strand breaksRAG DNA double-strand breaksMultiple genomic locationsTranscription of genesNF-κB transcription factorsDSB responseGenomic integrityGenomic locationATM kinaseTranscriptional repressionRAG cleavageCellular functionsDamage responseLocus recombinationMammalian cellsRAG1 proteinTranscription factorsModulator proteinRAG expressionAtaxia telangiectasiaTranscriptional inhibitionDevelopmental stagesNew insights into the evolutionary origins of the recombination‐activating gene proteins and V(D)J recombination
Carmona LM, Schatz DG. New insights into the evolutionary origins of the recombination‐activating gene proteins and V(D)J recombination. The FEBS Journal 2017, 284: 1590-1605. PMID: 27973733, PMCID: PMC5459667, DOI: 10.1111/febs.13990.Peer-Reviewed Original ResearchConceptsTransposable elementsEvolutionary originRAG proteinsAbsence of RAG2Independent evolutionary originsBasal chordate amphioxusRecombination-activating gene (RAG) proteinsFamily of transposasesAntigen receptor genesRAG transposonChordate amphioxusJawed vertebratesSequence similarityEvolutionary relativesProteins RAG1RAG genesGene proteinRAG1Gene segmentsDiverse arrayMechanistic linkProteinRAG2Adaptive immune systemDNA cleavage reaction
2016
Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination
Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Zhang Y, Yu W, Pontarotti P, Escriva H, Le Petillon Y, Liu X, Chen S, Schatz DG, Xu A. Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination. Cell 2016, 166: 102-114. PMID: 27293192, PMCID: PMC5017859, DOI: 10.1016/j.cell.2016.05.032.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDNA Transposable ElementsDNA-Binding ProteinsEvolution, MolecularHomeodomain ProteinsLanceletsTerminal Repeat SequencesV(D)J RecombinationConceptsRAG transposonAntigen receptor gene assemblyBasal extant chordateDNA transposon familiesVertebrate adaptive immunityRecombination signal sequencesExtant chordatesTarget site duplicationsTransposable elementsDNA recombinationSignal sequenceTransposon excisionGene assemblyProtoRAGTransposon familySite duplicationsCrucial eventTransposonRecombinationAdaptive immunityChordatesTIRLanceletsRAG1/2GermlineCollaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination
Carmona LM, Fugmann SD, Schatz DG. Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination. Genes & Development 2016, 30: 909-917. PMID: 27056670, PMCID: PMC4840297, DOI: 10.1101/gad.278432.116.Peer-Reviewed Original ResearchConceptsRecombination-activating gene 1Transib transposaseAbsence of RAG2RAG1/RAG2Antigen receptor genesJawed vertebratesRAG2 proteinsTransposable elementsRAG1 proteinRegulatory featuresDNA substratesGene 1RAG2Receptor geneRecombination activityProteinRecombinationTransposaseAdaptive immunityVertebratesTransposonGenesEvolutionLow levelsOriginBcl6 Is Required for Somatic Hypermutation and Gene Conversion in Chicken DT40 Cells
Williams AM, Maman Y, Alinikula J, Schatz DG. Bcl6 Is Required for Somatic Hypermutation and Gene Conversion in Chicken DT40 Cells. PLOS ONE 2016, 11: e0149146. PMID: 26900682, PMCID: PMC4762950, DOI: 10.1371/journal.pone.0149146.Peer-Reviewed Original ResearchConceptsDT40 cellsGene conversionTarget genesClass switch recombinationGene bodiesSomatic hypermutationB cell gene expression programChicken DT40 B cellsBCL6 functionCell gene expression programChicken DT40 cellsDT40 B cellsGene expression programsRNA polymerase IIDeficient DT40 cellsTranscription start siteExpression of AIDAbsence of Bcl6High-level expressionB cellsExpression programsPolymerase IIPol IIStart siteTranscriptional features
2015
Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination
Shetty K, Schatz DG. Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination. Molecular And Cellular Biology 2015, 35: 3701-3713. PMID: 26303526, PMCID: PMC4589606, DOI: 10.1128/mcb.00219-15.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineChromatinDNADNA CleavageDNA-Binding ProteinsHomeodomain ProteinsMiceProtein BindingV(D)J RecombinationConceptsConserved heptamerRAG2 proteinsChromatin immunoprecipitationNonamer elementsRecombination substratesSignal sequenceNonamer sequencesMutant formsCryptic RSSsRAG1DNA cleavageGene segmentsChromatinCell linesRAG2ProteinRecruitmentRecombinationSequenceMajor roleMutagenesisImmunoprecipitationRepeatsRSSsRAGChromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes
Hu J, Zhang Y, Zhao L, Frock RL, Du Z, Meyers RM, Meng FL, Schatz DG, Alt FW. Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes. Cell 2015, 163: 947-959. PMID: 26593423, PMCID: PMC4660266, DOI: 10.1016/j.cell.2015.10.016.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCCCTC-Binding FactorChromosomes, MammalianDNA-Binding ProteinsGenes, mycGenomeHigh-Throughput Nucleotide SequencingHomeodomain ProteinsHumansImmunoglobulin Heavy ChainsLymphomaMiceNucleotide MotifsRegulatory Sequences, Nucleic AcidRepressor ProteinsSequence Analysis, DNATranslocation, GeneticV(D)J RecombinationConceptsRecombination signal sequencesRSS pairAntigen receptor genesSignal sequenceRAG activityDNA breaksChromosomal loopsLoop domainBiological processesConvergent CTCFChromosomal translocationsCleavage siteReceptor geneTarget activitySuch breaksMarked orientation dependenceRecombinationRAGCTCFChromatinMegabasesOff-target distributionGenesBreaksDomainRAG Represents a Widespread Threat to the Lymphocyte Genome
Teng G, Maman Y, Resch W, Kim M, Yamane A, Qian J, Kieffer-Kwon KR, Mandal M, Ji Y, Meffre E, Clark MR, Cowell LG, Casellas R, Schatz DG. RAG Represents a Widespread Threat to the Lymphocyte Genome. Cell 2015, 162: 751-765. PMID: 26234156, PMCID: PMC4537821, DOI: 10.1016/j.cell.2015.07.009.Peer-Reviewed Original ResearchConceptsRecombination signalsStrong recombination signalGenome stabilityHuman genomeActive promotersGenomeDNA damageChromosomal translocationsCleavage siteWidespread threatRAG1Lymphocyte genomeEvolutionary struggleRecombinationRAGChromatinPromoterEndonucleaseSitesRAG2TranslocationAbundanceDepletionEnhancerHeptamerMechanisms of clonal evolution in childhood acute lymphoblastic leukemia
Swaminathan S, Klemm L, Park E, Papaemmanuil E, Ford A, Kweon SM, Trageser D, Hasselfeld B, Henke N, Mooster J, Geng H, Schwarz K, Kogan SC, Casellas R, Schatz DG, Lieber MR, Greaves MF, Müschen M. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nature Immunology 2015, 16: 766-774. PMID: 25985233, PMCID: PMC4475638, DOI: 10.1038/ni.3160.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAnimalsAntibody DiversityB-LymphocytesChildChild, PreschoolClonal EvolutionCytidine DeaminaseDNA-Binding ProteinsFemaleFlow CytometryHomeodomain ProteinsHumansImmunoblottingInfantMaleMice, Inbred NODMice, KnockoutMice, SCIDMice, TransgenicMicroscopy, FluorescencePrecursor Cell Lymphoblastic Leukemia-LymphomaPrecursor Cells, B-LymphoidReverse Transcriptase Polymerase Chain ReactionTumor Cells, CulturedSingle-molecule analysis of RAG-mediated V(D)J DNA cleavage
Lovely GA, Brewster RC, Schatz DG, Baltimore D, Phillips R. Single-molecule analysis of RAG-mediated V(D)J DNA cleavage. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: e1715-e1723. PMID: 25831509, PMCID: PMC4394307, DOI: 10.1073/pnas.1503477112.Peer-Reviewed Original ResearchConceptsRecombination signal sequencesSingle-molecule assaysSame DNA moleculeAntigen receptor genesConsensus recombination signal sequencesSingle-molecule analysisHigh mobility group box protein 1Individual molecular eventsSignal sequenceSingle-molecule levelGene productsDNA bindingMolecular eventsLymphocyte developmentDNA moleculesDNA cleavageProtein 1Synapse formationSynaptic complexReceptor geneCleavageRAGAssaysRAG1/2ComplexesMapping and Quantitation of the Interaction between the Recombination Activating Gene Proteins RAG1 and RAG2* ♦
Zhang YH, Shetty K, Surleac MD, Petrescu AJ, Schatz DG. Mapping and Quantitation of the Interaction between the Recombination Activating Gene Proteins RAG1 and RAG2* ♦. Journal Of Biological Chemistry 2015, 290: 11802-11817. PMID: 25745109, PMCID: PMC4424321, DOI: 10.1074/jbc.m115.638627.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCatalytic DomainDNA-Binding ProteinsGene Expression RegulationGenome, HumanHEK293 CellsHomeodomain ProteinsHumansInterferometryMaleMiceMice, Inbred C57BLMolecular Sequence DataMutationNuclear ProteinsProtein BindingProtein Interaction MappingProtein Structure, SecondaryThymus GlandV(D)J RecombinationVDJ RecombinasesConceptsRegion of RAG1Α-helixZinc finger regionResidues N-terminalActive siteAcidic amino acidsPulldown assaysAccessory factorsHermes transposaseProteins RAG1Finger regionRAG activityQuantitative Western blottingC-terminusRAG endonucleaseN-terminalCatalytic functionRAG1Amino acidsDNA cleavageRAG2Nuclear concentrationRecombination activityCatalytic centerBiolayer interferometrySpatio-temporal regulation of RAG2 following genotoxic stress
Rodgers W, Byrum JN, Sapkota H, Rahman NS, Cail RC, Zhao S, Schatz DG, Rodgers KK. Spatio-temporal regulation of RAG2 following genotoxic stress. DNA Repair 2015, 27: 19-27. PMID: 25625798, PMCID: PMC4336829, DOI: 10.1016/j.dnarep.2014.12.008.Peer-Reviewed Original ResearchMeSH KeywordsActive Transport, Cell NucleusAtaxia Telangiectasia Mutated ProteinsCell NucleusCells, CulturedCentrosomeDNADNA Breaks, Double-StrandedDNA RepairDNA-Binding ProteinsGene Knockdown TechniquesHumansMicroscopy, FluorescenceMutationNuclear ProteinsPrecursor Cells, B-LymphoidRadiation, IonizingSubcellular FractionsVDJ RecombinasesConceptsDNA double-strand breaksGenotoxic stressorsCellular responsesFormation of DSBsLymphocyte antigen receptor genesDNA DSBsSpatio-temporal regulationInhibition of ATMDNA damaging agentsSubcellular fractionation approachDouble-strand breaksAntigen receptor genesNuclear Rag2Genotoxic stressRAG complexDNA repairIncorrect repairDamaging agentsStrand breaksNovel mechanismRAG2Receptor geneCentrosomesFractionation approachSubstantial enrichment
2014
The RAG Recombinase Dictates Functional Heterogeneity and Cellular Fitness in Natural Killer Cells
Karo JM, Schatz DG, Sun JC. The RAG Recombinase Dictates Functional Heterogeneity and Cellular Fitness in Natural Killer Cells. Cell 2014, 159: 94-107. PMID: 25259923, PMCID: PMC4371485, DOI: 10.1016/j.cell.2014.08.026.Peer-Reviewed Original ResearchConceptsRecombination-activating geneDNA damage response mediatorsInnate lymphoid cellsNatural killer cellsAntigen receptor genesCellular fitnessJawed vertebratesRAG recombinaseCellular stressInnate lymphocytesNovel functionDNA breaksKiller cellsEndonuclease activityUnexpected roleCleavage eventsAdaptive immune cellsReceptor geneReduced expressionGenesFunctional heterogeneityCellsImmune cellsResponse mediatorsFitness