2022
The role of FYCO1-dependent autophagy in lens fiber cell differentiation
Khan SY, Ali M, Kabir F, Na CH, Delannoy M, Ma Y, Qiu C, Costello MJ, Hejtmancik JF, Riazuddin SA. The role of FYCO1-dependent autophagy in lens fiber cell differentiation. Autophagy 2022, 18: 2198-2215. PMID: 35343376, PMCID: PMC9397473, DOI: 10.1080/15548627.2022.2025570.Peer-Reviewed Original ResearchConceptsAutophagic vesiclesLens fiber cell differentiationMouse lensesAutophagic fluxFiber cell differentiationHuman embryonic stem cellsCoiled-coil domainOrganelle-free zoneEmbryonic stem cellsHuman lens epithelial cellsAutophagy-associated genesSingle guide RNAsQuantitative real-time PCRLens epithelial cellsAdaptor proteinRNA-seqGuide RNARNA sequencingCellular organellesLens morphogenesisCataract phenotypeWild typeFYCO1Cell differentiationEndoplasmic reticulum
2015
Characterization of the mammalian miRNA turnover landscape
Guo Y, Liu J, Elfenbein SJ, Ma Y, Zhong M, Qiu C, Ding Y, Lu J. Characterization of the mammalian miRNA turnover landscape. Nucleic Acids Research 2015, 43: 2326-2341. PMID: 25653157, PMCID: PMC4344502, DOI: 10.1093/nar/gkv057.Peer-Reviewed Original ResearchConceptsMiRNA turnoverStable small RNAsMammalian cell typesCultured mammalian cellsSubset of miRNAsTurnover kineticsMiRNA biogenesisMost miRNAsMiR-222-5pNucleotide biasSmall RNAsMiRNA maturationMammalian cellsSame miRNAMiRNA poolExpression profilingHsp90 associationSequence determinantsDeep sequencingHsp90 inhibitionTurnover rateMiRNA isoformsDifferent turnover ratesSequence featuresCell types
2013
Small-Diameter Vascular Graft Engineered Using Human Embryonic Stem Cell-Derived Mesenchymal Cells
Sundaram S, Echter A, Sivarapatna A, Qiu C, Niklason L. Small-Diameter Vascular Graft Engineered Using Human Embryonic Stem Cell-Derived Mesenchymal Cells. Tissue Engineering Part A 2013, 20: 740-750. PMID: 24125588, PMCID: PMC3926168, DOI: 10.1089/ten.tea.2012.0738.Peer-Reviewed Original ResearchConceptsHuman embryonic stem cellsHuman embryonic stem cell-derived mesenchymal cellsSmooth muscle cellsSMC marker expressionMesenchymal cellsEmbryonic stem cellsMarkers of cartilageLineage commitmentNew cell sourceGrowth factor betaStem cellsDifferentiation capabilityCell populationsNative counterpartsMuscle cellsHuman vessel wallStringent analysisFactor betaCell sourceCellsMarker expressionSmooth muscle actinMuscle actinVascular constructsCell sourcing
2009
Role for MKL1 in megakaryocytic maturation
Cheng EC, Luo Q, Bruscia EM, Renda MJ, Troy JA, Massaro SA, Tuck D, Schulz V, Mane SM, Berliner N, Sun Y, Morris SW, Qiu C, Krause DS. Role for MKL1 in megakaryocytic maturation. Blood 2009, 113: 2826-2834. PMID: 19136660, PMCID: PMC2661865, DOI: 10.1182/blood-2008-09-180596.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood Cell CountBone MarrowCell DifferentiationCell Line, TumorCells, CulturedDNA-Binding ProteinsGene Expression ProfilingGene Expression RegulationHumansLeukemia, Erythroblastic, AcuteMegakaryocytesMiceMice, Inbred C57BLMice, KnockoutOligonucleotide Array Sequence AnalysisOncogene Proteins, FusionPloidiesRecombinant Fusion ProteinsRNA InterferenceRNA, Small InterferingSerum Response FactorThrombocytopeniaThrombopoiesisThrombopoietinTrans-ActivatorsConceptsMegakaryoblastic leukemia 1Reduced platelet countsSerum response factorMegakaryocytic differentiationPeripheral bloodPlatelet countMKL1 expressionMegakaryoblastic leukemiaBone marrow megakaryocytesMuscle cellsPresence of thrombopoietinPhysiologic maturationHuman erythroleukemia cell lineIncreased numberMarrow megakaryocytesCell linesErythroleukemia cell lineMegakaryocytesMegakaryocytic maturationDifferentiated muscle cellsOverexpressionConcurrent increaseMuscle differentiationCellsMaturation