2022
Comprehensive visualization of cell–cell interactions in single-cell and spatial transcriptomics with NICHES
Raredon M, Yang J, Kothapalli N, Lewis W, Kaminski N, Niklason L, Kluger Y. Comprehensive visualization of cell–cell interactions in single-cell and spatial transcriptomics with NICHES. Bioinformatics 2022, 39: btac775. PMID: 36458905, PMCID: PMC9825783, DOI: 10.1093/bioinformatics/btac775.Peer-Reviewed Original ResearchConceptsCell-cell interactionsCell-cell signalingSingle-cell resolutionSingle-cell dataLocal cellular microenvironmentSingle-cell levelSpatial transcriptomics dataCell clustersExtracellular signalingTranscriptomic dataGene expression valuesSpatial transcriptomicsSignaling mechanismCellular microenvironmentNicheExpression valuesSupplementary dataSignalingTranscriptomicsComprehensive visualizationBioinformaticsInteraction
2017
Removal of batch effects using distribution-matching residual networks
Shaham U, Stanton KP, Zhao J, Li H, Raddassi K, Montgomery R, Kluger Y. Removal of batch effects using distribution-matching residual networks. Bioinformatics 2017, 33: 2539-2546. PMID: 28419223, PMCID: PMC5870543, DOI: 10.1093/bioinformatics/btx196.Peer-Reviewed Original ResearchConceptsMeasurement errorNovel deep learning approachRandom measurement errorMultivariate distributionsResidual neural networkDeep learning approachNovel biological technologiesMaximum mean discrepancyPhysical phenomenaResidual networkNeural networkLearning approachSystematic componentSupplementary dataSystematic errorsMean discrepancyScRNA-seq datasetsBatch effectsErrorNetworkStatistical analysis