2022
Multiple consecutive runs of multi-state trials: Distributions of ( k 1 , k 2 , … , k ℓ ) patterns
Kong Y. Multiple consecutive runs of multi-state trials: Distributions of ( k 1 , k 2 , … , k ℓ ) patterns. Journal Of Computational And Applied Mathematics 2022, 403: 113846. DOI: 10.1016/j.cam.2021.113846.Peer-Reviewed Original Research
2020
Distributions of successions of arbitrary multisets
Kong Y. Distributions of successions of arbitrary multisets. Communication In Statistics- Theory And Methods 2020, 51: 1693-1705. DOI: 10.1080/03610926.2020.1767137.Peer-Reviewed Original Research
2018
Decoupling Combinatorial Complexity: a Two-Step Approach to Distributions of Runs
Kong Y. Decoupling Combinatorial Complexity: a Two-Step Approach to Distributions of Runs. Methodology And Computing In Applied Probability 2018, 21: 789-803. DOI: 10.1007/s11009-018-9689-1.Peer-Reviewed Original ResearchRun-related distributionsDistribution of runsMultivariate random sequencesCombinatorial complexityFinite Markov chainsMulti-object systemNearest-neighbor interactionsStatistical physicsCombinatorial difficultiesMarkov chainExplicit formRun statisticsNeighbor interactionsMultinomial coefficientsDifferent systematic approachesGeneral frameworkRun distributionRandom sequenceKinds of objectsTwo-step approachCombinatoricsGeneral formulaIndependent stepsComplexityPhysicsJoint distribution of rises, falls, and number of runs in random sequences
Kong Y. Joint distribution of rises, falls, and number of runs in random sequences. Communication In Statistics- Theory And Methods 2018, 48: 493-499. DOI: 10.1080/03610926.2017.1414261.Peer-Reviewed Original Research
2016
The mth longest runs of multivariate random sequences
Kong Y. The mth longest runs of multivariate random sequences. Annals Of The Institute Of Statistical Mathematics 2016, 69: 497-512. DOI: 10.1007/s10463-015-0551-8.Peer-Reviewed Original ResearchNumber of appearances of events in random sequences: A new approach to non-overlapping runs
Kong Y. Number of appearances of events in random sequences: A new approach to non-overlapping runs. Communication In Statistics- Theory And Methods 2016, 45: 6765-6772. DOI: 10.1080/03610926.2014.968728.Peer-Reviewed Original Research