2006
Distribution of Runs and Longest Runs
Kong Y. Distribution of Runs and Longest Runs. Journal Of The American Statistical Association 2006, 101: 1253-1263. DOI: 10.1198/016214505000001401.Peer-Reviewed Original ResearchRun statisticsExplicit formulaParticular generating functionsGeneral explicit formulaSimple explicit formulaStatistical mechanicsGeneral methodDistribution of runsExample of applicationGenerating functionNew distributionPartition functionBiological sequence analysisExact distributionLattice modelUnified wayCombinatorial methodsComputational biologySimple formulaBinomial identitiesUse formulasStatisticsFormulaSystematic methodObject systems
2001
A Simple Method for Evaluating Partition Functions of Linear Polymers
Kong Y. A Simple Method for Evaluating Partition Functions of Linear Polymers. The Journal Of Physical Chemistry B 2001, 105: 10111-10114. DOI: 10.1021/jp011758n.Peer-Reviewed Original Research
1999
General recurrence theory of ligand binding on a three-dimensional lattice
Kong Y. General recurrence theory of ligand binding on a three-dimensional lattice. The Journal Of Chemical Physics 1999, 111: 4790-4799. DOI: 10.1063/1.479242.Peer-Reviewed Original ResearchTransfer matrix MLinear latticeMatrix MCircular latticePartition functionRecurrence relationsThree-dimensional lattice modelThree-dimensional latticeStatistical mechanicsLinear systemsSecular equationRecurrence theoryTransfer matrixLattice modelGeneral theorySimple geometryPeriodical boundary conditionsBoundary conditionsMatrix sizeEigenvaluesLatticeSimple structureUnique binding configurationsTwo-dimensional layersTheoryLigand binding on ladder lattices
Kong Y. Ligand binding on ladder lattices. Biophysical Chemistry 1999, 81: 7-21. PMID: 17030328, DOI: 10.1016/s0301-4622(99)00078-2.Peer-Reviewed Original ResearchPartition functionLinear ladderTwo-dimensional laddersCases explicit formulasClosed-form formulaClosed-form expressionsTransfer matrix methodLadder latticeOne-dimensional modelExplicit formulaAnalytical solutionTwo-dimensional modelRecurrence relationsMatrix methodNumerical resultsGeneral situationGeneral relationGeneral methodEnd slopeTest casesExperimental dataFormulaModelLongitudinal direction
1996
Theory of multivalent binding in one and two-dimensional lattices
Di E, Kong Y. Theory of multivalent binding in one and two-dimensional lattices. Biophysical Chemistry 1996, 61: 107-124. PMID: 17023370, DOI: 10.1016/s0301-4622(96)02178-3.Peer-Reviewed Original ResearchTwo-dimensional torusPartition functionLinear latticeOne-dimensional linear latticeExact analytical solutionTwo-dimensional latticeCases of interestGeometry of interactionLimit NRecursion relationsAnalytical solutionCombinatorial argumentsDimensional embeddingSpecial caseAnalytical expressionsSimple transformationTorusLatticeLength nExperimental measurementsGeometryTheorySite-specific propertiesGeneral conditionN sites