2023
Novel epigenetic molecular therapies for imprinting disorders
Wang S, Jiang Y. Novel epigenetic molecular therapies for imprinting disorders. Molecular Psychiatry 2023, 28: 3182-3193. PMID: 37626134, PMCID: PMC10618104, DOI: 10.1038/s41380-023-02208-7.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsActive alleleImprinting disordersMolecular mechanismsGenome editing approachesEpigenetic-based therapiesUnique molecular mechanismGenomic imprinting disordersImprinted genesGenome editingMolecular approachesEditing approachesInactive allelesNew therapeutic strategiesAllelesSmall moleculesMolecular therapyTherapeutic strategies
2016
Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome
Kim Y, Lee HM, Xiong Y, Sciaky N, Hulbert SW, Cao X, Everitt JI, Jin J, Roth BL, Jiang YH. Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome. Nature Medicine 2016, 23: 213-222. PMID: 28024084, PMCID: PMC5589073, DOI: 10.1038/nm.4257.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCell LineDisease Models, AnimalEnzyme InhibitorsEpigenesis, GeneticFemaleFibroblastsGene ExpressionGenomic ImprintingHistone CodeHistone-Lysine N-MethyltransferaseHumansImmunohistochemistryMaleMethylationMicePrader-Willi SyndromeQuinazolinesReverse Transcriptase Polymerase Chain ReactionRNA, Small NucleolarSnRNP Core ProteinsSurvival RateUbiquitin-Protein LigasesIsoform Switch of TET1 Regulates DNA Demethylation and Mouse Development
Zhang W, Xia W, Wang Q, Towers AJ, Chen J, Gao R, Zhang Y, Yen CA, Lee AY, Li Y, Zhou C, Liu K, Zhang J, Gu TP, Chen X, Chang Z, Leung D, Gao S, Jiang YH, Xie W. Isoform Switch of TET1 Regulates DNA Demethylation and Mouse Development. Molecular Cell 2016, 64: 1062-1073. PMID: 27916660, DOI: 10.1016/j.molcel.2016.10.030.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBinding SitesChromatinCpG IslandsDNA-Binding ProteinsEmbryo, MammalianGene Expression Regulation, DevelopmentalGenomic ImprintingMaleMiceMouse Embryonic Stem CellsOvumPromoter Regions, GeneticProtein BindingProtein Interaction Domains and MotifsProtein IsoformsProto-Oncogene ProteinsSpermatozoaConceptsPrimordial germ cellsEmbryonic stem cellsCpG islandsChromatin bindingDNA demethylationMouse developmentDNA-binding modulesCXXC domainTET proteinsEarly embryosSomatic cellsN-terminusDevelopmental defectsShort isoformExclusive expressionTET1Germ cellsIsoform switchStem cellsDemethylationIsoformsCellsBindingImportant roleTerminus
2008
Genomic analysis of the chromosome 15q11-q13 Prader-Willi syndrome region and characterization of transcripts for GOLGA8E and WHCD1L1 from the proximal breakpoint region
Jiang YH, Wauki K, Liu Q, Bressler J, Pan Y, Kashork CD, Shaffer LG, Beaudet AL. Genomic analysis of the chromosome 15q11-q13 Prader-Willi syndrome region and characterization of transcripts for GOLGA8E and WHCD1L1 from the proximal breakpoint region. BMC Genomics 2008, 9: 50. PMID: 18226259, PMCID: PMC2268926, DOI: 10.1186/1471-2164-9-50.Peer-Reviewed Original ResearchMeSH KeywordsAlternative SplicingAngelman SyndromeAnimalsAutoantigensChromosome BreakageChromosome DeletionChromosomes, Human, Pair 15Conserved SequenceContig MappingCpG IslandsDNA MethylationElectrophoresis, Gel, Pulsed-FieldExonsGenomic ImprintingGenomicsHumansIntronsMiceOpen Reading FramesPrader-Willi SyndromeRNA, MessengerTranscription, GeneticWiskott-Aldrich Syndrome Protein FamilyConceptsLow-copy repeatsHuman genomeAllele-specific expression patternsProtein-coding genesHuman genome sequenceComplex chromosomal regionsCoiled-coil proteinsUCSC Genome BrowserCharacterization of transcriptsPolymorphic regionSequence-based physical mapProximal breakpoint regionCultured human cellsExtensive sequence analysisCopy number variationsGenomic orientationGene organizationNovel genesCentromeric deletion breakpointGenome sequenceSubfamily proteinsGenome browserGenomic analysisPhysical mapExact protein
2004
EPIGENETICS AND HUMAN DISEASE
Jiang YH, Bressler J, Beaudet AL. EPIGENETICS AND HUMAN DISEASE. Annual Review Of Genomics And Human Genetics 2004, 5: 479-510. PMID: 15485357, DOI: 10.1146/annurev.genom.5.061903.180014.Peer-Reviewed Original ResearchConceptsHuman diseasesComplex disease traitsRole of epigeneticsHeritable changesChromatin structureGenomic imprintingDNA sequencesEpigenetic phenotypesDisease traitsGene expressionImprinting defectsGenetic scansBeckwith-Wiedemann syndromeGenesDisease phenotypeUniparental disomyDe novoEpigeneticsPhenotypeGenetic disordersExpressionChromatinEpimutationsTraitsMutations
2003
Disruption of the genomic imprint in trans with homologous recombination at Snrpn in ES cells
Tsai T, Bressler J, Jiang Y, Beaudet AL. Disruption of the genomic imprint in trans with homologous recombination at Snrpn in ES cells. Genesis 2003, 37: 151-161. PMID: 14666508, DOI: 10.1002/gene.10237.Peer-Reviewed Original ResearchConceptsPaternal alleleImprinting centerMaternal alleleSomatic mammalian cellsTrans-acting factorsActivation of expressionSNURF-SNRPN geneMouse ES cellsChromatin domainsGenomic imprintsImprinted domainMammalian cellsHomologous recombinationGene targetingHomologous associationES cellsComplete demethylationSNURF-SNRPNPrader-Willi syndromeExon 2AllelesGenesRecombinantsCellsDomain
2002
A Rheostat Model for a Rapid and Reversible Form of Imprinting-Dependent Evolution
Beaudet AL, Jiang YH. A Rheostat Model for a Rapid and Reversible Form of Imprinting-Dependent Evolution. American Journal Of Human Genetics 2002, 70: 1389-1397. PMID: 11992247, PMCID: PMC379123, DOI: 10.1086/340969.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAnimalsBiological EvolutionGene SilencingGenomic ImprintingHaploidyMammalsModels, GeneticPhenotypeConceptsGenomic imprintingRheostat modelGene expressionSelective advantageNon-Mendelian inheritanceDosage-sensitive lociMajority of variantsEpigenetic variantsEvolutionary advantageForm of evolutionSilent alleleImprintingPhenotypeIntegrated mechanismEnhanced adaptabilityExpressionDeleterious effectsEvolutionMammalsHypervariabilityWide continuumGenesMendelianLociMechanism
1999
Paternal Deletion from Snrpn to Ube3a in the Mouse Causes Hypotonia, Growth Retardation and Partial Lethality and Provides Evidence for a Gene Contributing to Prader-Willi Syndrome
Tsai T, Jiang Y, Bressler J, Armstrong D, Beaudet A. Paternal Deletion from Snrpn to Ube3a in the Mouse Causes Hypotonia, Growth Retardation and Partial Lethality and Provides Evidence for a Gene Contributing to Prader-Willi Syndrome. Human Molecular Genetics 1999, 8: 1357-1364. PMID: 10400982, DOI: 10.1093/hmg/8.8.1357.Peer-Reviewed Original ResearchMeSH KeywordsAbnormalities, MultipleAnimalsAutoantigensBrainChromosome DeletionFemaleGene ExpressionGenomic ImprintingHumansLigasesMaleMiceMice, Inbred StrainsMuscle HypotoniaMutagenesis, Site-DirectedOpen Reading FramesPedigreePhenotypePrader-Willi SyndromeRibonucleoproteins, Small NuclearRNASnRNP Core ProteinsUbiquitin-Protein LigasesConceptsOpen reading framePartial lethalityExon 2Pathogenesis of PWSUpstream open reading framesObvious phenotypic abnormalitiesMouse chromosome 7CGenomic imprintsImprinted expressionPrader-Willi syndromeHuman translocationImprinted genesGene ContributingStructural genePaternal deficiencyChromosome 7CPaternal chromosomesGenotype/phenotype correlationHuman chromosomesMethylation patternsImprinting mutationsReading frameMultiple genesLoss of expressionSNRPN
1998
Imprinting in Angelman and Prader-Willi syndromes
Jiang Y, Tsai T, Bressler J, Beaudet A. Imprinting in Angelman and Prader-Willi syndromes. Current Opinion In Genetics & Development 1998, 8: 334-342. PMID: 9691003, DOI: 10.1016/s0959-437x(98)80091-9.Peer-Reviewed Original ResearchMeSH KeywordsAngelman SyndromeAnimalsChromosomes, Human, Pair 15Genomic ImprintingHumansLigasesPrader-Willi SyndromeUbiquitin-Protein LigasesConceptsE6-AP ubiquitin-protein ligaseUbiquitin-protein ligaseAnalysis of methylationTissue-specific imprintingAngelman syndromeSNRPN promoterPrader-Willi syndromeAS genesMaternal chromosomesGene expressionGenomic sequencingPoint mutationsGenesBisulfite methodMethylationCandidate regionsImprintingHippocampal neuronsDrosophilaNecdinSNRPNLigaseChromosomesPromoterPurkinje cells
1997
The E6–AP Ubiquitin–Protein Ligase (UBE3A) Gene Is Localized within a Narrowed Angelman Syndrome Critical Region
Sutcliffe J, Jiang Y, Galjaard R, Matsuura T, Fang P, Kubota T, Christian S, Bressler J, Cattanach B, Ledbetter D, Beaudet A. The E6–AP Ubiquitin–Protein Ligase (UBE3A) Gene Is Localized within a Narrowed Angelman Syndrome Critical Region. Genome Research 1997, 7: 368-377. PMID: 9110176, PMCID: PMC139148, DOI: 10.1101/gr.7.4.368.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAngelman SyndromeAnimalsBlotting, NorthernBlotting, SouthernChromosome AberrationsChromosome MappingChromosomes, Artificial, YeastChromosomes, Human, Pair 15Cloning, MolecularCosmidsElectrophoresis, Gel, Pulsed-FieldFemaleGene DeletionGene DosageGene Expression Regulation, DevelopmentalGenetic MarkersGenomic ImprintingHumansIn Situ HybridizationLigasesMaleMiceMice, Mutant StrainsMolecular Sequence DataPaternityPrader-Willi SyndromeSequence Homology, Amino AcidSequence Homology, Nucleic AcidTissue DistributionTranscription, GeneticTranslocation, GeneticUbiquitin-Protein LigasesConceptsLigase geneUbiquitin protein ligase geneAngelman syndromeEntire transcriptional unitCandidate regionsMaternal-specific expressionE6-AP ubiquitinTranscriptional unitsPaternal deficiencyRT-PCR analysisMouse homologPrader-Willi syndromePaternal uniparental disomyPhysical mapDe novo truncating mutationsNovo truncating mutationsRecent identificationUBE3A locusMouse tissuesGenesUbe3a expressionLociUniparental disomyProtein levelsAS regionDe novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome
Matsuura T, Sutcliffe J, Fang P, Galjaard R, Jiang Y, Benton C, Rommens J, Beaudet A. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nature Genetics 1997, 15: 74-77. PMID: 8988172, DOI: 10.1038/ng0197-74.Peer-Reviewed Original ResearchConceptsGene productsAngelman syndromeNovo truncating mutationsUbiquitin protein ligase geneUbiquitin-dependent proteolytic pathwayE6-AP ubiquitin-protein ligaseHuman genetic disordersUbiquitin-protein ligaseUBE3A geneTruncating mutationsEvidence of expressionUnlikely candidate geneGenetic disordersLigase geneParental allelesAS genesHuman chromosomesPaternal uniparental disomyCandidate genesDe novo truncating mutationsProteolytic pathwayNovo nonsense mutationGenesIntragenic mutationsMolecular defects