2022
Detecting regions of homozygosity improves the diagnosis of pathogenic variants and uniparental disomy in pediatric patients
Wen J, Chai H, Grommisch B, DiAdamo A, Dykas D, Ma D, Popa A, Zhao C, Spencer‐Manzon M, Jiang Y, McGrath J, Li P, Bale A, Zhang H. Detecting regions of homozygosity improves the diagnosis of pathogenic variants and uniparental disomy in pediatric patients. American Journal Of Medical Genetics Part A 2022, 188: 1728-1738. PMID: 35199448, DOI: 10.1002/ajmg.a.62693.Peer-Reviewed Original ResearchMeSH KeywordsChildConsanguinityExome SequencingHomozygoteHumansPolymorphism, Single NucleotidePrader-Willi SyndromeUniparental DisomyConceptsPediatric patientsWhole-exome sequencingCase seriesAR diseasesPathogenic variantsLarge consecutive case seriesConsecutive case seriesLarge case seriesUniparental disomyLikely pathogenic variantsRegions of homozygosityChromosomal microarray analysisAutosomal recessive diseasePrader-Willi syndromeDiagnostic findingsDiagnostic yieldPatientsPredictive valueGenetic testingHomozygous variantDiseaseExome sequencingRecessive diseaseGenetic counselingStrongest predictor
2019
Potential of Epigenetic Therapy for Prader-Willi Syndrome
Wang SE, Jiang YH. Potential of Epigenetic Therapy for Prader-Willi Syndrome. Trends In Pharmacological Sciences 2019, 40: 605-608. PMID: 31353046, DOI: 10.1016/j.tips.2019.07.002.Peer-Reviewed Original ResearchEpigenetic therapy of Prader–Willi syndrome
Kim Y, Wang SE, Jiang YH. Epigenetic therapy of Prader–Willi syndrome. Translational Research 2019, 208: 105-118. PMID: 30904443, PMCID: PMC6527448, DOI: 10.1016/j.trsl.2019.02.012.Peer-Reviewed Original ResearchConceptsPWS mouse modelEpigenetic-based therapiesMaternal chromosomesImprinted gene regulationEHMT2/G9aLysine 9 methyltransferasePatient-derived fibroblastsPrader-Willi syndromeGene regulationMethyltransferase SETDB1Epigenetic mechanismsSmall molecule librariesPWS genesHigh-content screeningSame genePerinatal lethalityEpigenetic therapyFusion proteinMolecular mechanismsG9a inhibitorChromosomesSNORD116 clusterGenesMolecular defectsPatient iPSC
2016
Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome
Kim Y, Lee HM, Xiong Y, Sciaky N, Hulbert SW, Cao X, Everitt JI, Jin J, Roth BL, Jiang YH. Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome. Nature Medicine 2016, 23: 213-222. PMID: 28024084, PMCID: PMC5589073, DOI: 10.1038/nm.4257.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCell LineDisease Models, AnimalEnzyme InhibitorsEpigenesis, GeneticFemaleFibroblastsGene ExpressionGenomic ImprintingHistone CodeHistone-Lysine N-MethyltransferaseHumansImmunohistochemistryMaleMethylationMicePrader-Willi SyndromeQuinazolinesReverse Transcriptase Polymerase Chain ReactionRNA, Small NucleolarSnRNP Core ProteinsSurvival RateUbiquitin-Protein Ligases
2015
Parental origin impairment of synaptic functions and behaviors in cytoplasmic FMRP interacting protein 1 (Cyfip1) deficient mice
Chung L, Wang X, Zhu L, Towers AJ, Cao X, Kim IH, Jiang YH. Parental origin impairment of synaptic functions and behaviors in cytoplasmic FMRP interacting protein 1 (Cyfip1) deficient mice. Brain Research 2015, 1629: 340-350. PMID: 26474913, PMCID: PMC4744651, DOI: 10.1016/j.brainres.2015.10.015.Peer-Reviewed Original ResearchConceptsPrader-Willi syndromeClinical presentationClass ISynaptic transmissionExpression of CYFIP1Impaired synaptic transmissionRole of CYFIP1Breakpoint 2Severe clinical presentationLong-term depressionCued fear conditioningPaired-pulse facilitationZero-maze testHuman neuropsychiatric disordersClass II deletionsBreakpoints 1Neurological presentationAS patientsHippocampal CA1Deficient miceTerm depressionMaternal deficiencyPatientsHaploinsufficiency of Cyfip1Synaptic function
2008
Genomic analysis of the chromosome 15q11-q13 Prader-Willi syndrome region and characterization of transcripts for GOLGA8E and WHCD1L1 from the proximal breakpoint region
Jiang YH, Wauki K, Liu Q, Bressler J, Pan Y, Kashork CD, Shaffer LG, Beaudet AL. Genomic analysis of the chromosome 15q11-q13 Prader-Willi syndrome region and characterization of transcripts for GOLGA8E and WHCD1L1 from the proximal breakpoint region. BMC Genomics 2008, 9: 50. PMID: 18226259, PMCID: PMC2268926, DOI: 10.1186/1471-2164-9-50.Peer-Reviewed Original ResearchMeSH KeywordsAlternative SplicingAngelman SyndromeAnimalsAutoantigensChromosome BreakageChromosome DeletionChromosomes, Human, Pair 15Conserved SequenceContig MappingCpG IslandsDNA MethylationElectrophoresis, Gel, Pulsed-FieldExonsGenomic ImprintingGenomicsHumansIntronsMiceOpen Reading FramesPrader-Willi SyndromeRNA, MessengerTranscription, GeneticWiskott-Aldrich Syndrome Protein FamilyConceptsLow-copy repeatsHuman genomeAllele-specific expression patternsProtein-coding genesHuman genome sequenceComplex chromosomal regionsCoiled-coil proteinsUCSC Genome BrowserCharacterization of transcriptsPolymorphic regionSequence-based physical mapProximal breakpoint regionCultured human cellsExtensive sequence analysisCopy number variationsGenomic orientationGene organizationNovel genesCentromeric deletion breakpointGenome sequenceSubfamily proteinsGenome browserGenomic analysisPhysical mapExact protein
2003
Disruption of the genomic imprint in trans with homologous recombination at Snrpn in ES cells
Tsai T, Bressler J, Jiang Y, Beaudet AL. Disruption of the genomic imprint in trans with homologous recombination at Snrpn in ES cells. Genesis 2003, 37: 151-161. PMID: 14666508, DOI: 10.1002/gene.10237.Peer-Reviewed Original ResearchConceptsPaternal alleleImprinting centerMaternal alleleSomatic mammalian cellsTrans-acting factorsActivation of expressionSNURF-SNRPN geneMouse ES cellsChromatin domainsGenomic imprintsImprinted domainMammalian cellsHomologous recombinationGene targetingHomologous associationES cellsComplete demethylationSNURF-SNRPNPrader-Willi syndromeExon 2AllelesGenesRecombinantsCellsDomain
1999
Paternal Deletion from Snrpn to Ube3a in the Mouse Causes Hypotonia, Growth Retardation and Partial Lethality and Provides Evidence for a Gene Contributing to Prader-Willi Syndrome
Tsai T, Jiang Y, Bressler J, Armstrong D, Beaudet A. Paternal Deletion from Snrpn to Ube3a in the Mouse Causes Hypotonia, Growth Retardation and Partial Lethality and Provides Evidence for a Gene Contributing to Prader-Willi Syndrome. Human Molecular Genetics 1999, 8: 1357-1364. PMID: 10400982, DOI: 10.1093/hmg/8.8.1357.Peer-Reviewed Original ResearchMeSH KeywordsAbnormalities, MultipleAnimalsAutoantigensBrainChromosome DeletionFemaleGene ExpressionGenomic ImprintingHumansLigasesMaleMiceMice, Inbred StrainsMuscle HypotoniaMutagenesis, Site-DirectedOpen Reading FramesPedigreePhenotypePrader-Willi SyndromeRibonucleoproteins, Small NuclearRNASnRNP Core ProteinsUbiquitin-Protein LigasesConceptsOpen reading framePartial lethalityExon 2Pathogenesis of PWSUpstream open reading framesObvious phenotypic abnormalitiesMouse chromosome 7CGenomic imprintsImprinted expressionPrader-Willi syndromeHuman translocationImprinted genesGene ContributingStructural genePaternal deficiencyChromosome 7CPaternal chromosomesGenotype/phenotype correlationHuman chromosomesMethylation patternsImprinting mutationsReading frameMultiple genesLoss of expressionSNRPNGenetics of Angelman Syndrome
Jiang Y, Lev-Lehman E, Bressler J, Tsai T, Beaudet A. Genetics of Angelman Syndrome. American Journal Of Human Genetics 1999, 65: 1-6. PMID: 10364509, PMCID: PMC1378067, DOI: 10.1086/302473.Peer-Reviewed Original Research
1998
Imprinting in Angelman and Prader-Willi syndromes
Jiang Y, Tsai T, Bressler J, Beaudet A. Imprinting in Angelman and Prader-Willi syndromes. Current Opinion In Genetics & Development 1998, 8: 334-342. PMID: 9691003, DOI: 10.1016/s0959-437x(98)80091-9.Peer-Reviewed Original ResearchMeSH KeywordsAngelman SyndromeAnimalsChromosomes, Human, Pair 15Genomic ImprintingHumansLigasesPrader-Willi SyndromeUbiquitin-Protein LigasesConceptsE6-AP ubiquitin-protein ligaseUbiquitin-protein ligaseAnalysis of methylationTissue-specific imprintingAngelman syndromeSNRPN promoterPrader-Willi syndromeAS genesMaternal chromosomesGene expressionGenomic sequencingPoint mutationsGenesBisulfite methodMethylationCandidate regionsImprintingHippocampal neuronsDrosophilaNecdinSNRPNLigaseChromosomesPromoterPurkinje cells
1997
The E6–AP Ubiquitin–Protein Ligase (UBE3A) Gene Is Localized within a Narrowed Angelman Syndrome Critical Region
Sutcliffe J, Jiang Y, Galjaard R, Matsuura T, Fang P, Kubota T, Christian S, Bressler J, Cattanach B, Ledbetter D, Beaudet A. The E6–AP Ubiquitin–Protein Ligase (UBE3A) Gene Is Localized within a Narrowed Angelman Syndrome Critical Region. Genome Research 1997, 7: 368-377. PMID: 9110176, PMCID: PMC139148, DOI: 10.1101/gr.7.4.368.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAngelman SyndromeAnimalsBlotting, NorthernBlotting, SouthernChromosome AberrationsChromosome MappingChromosomes, Artificial, YeastChromosomes, Human, Pair 15Cloning, MolecularCosmidsElectrophoresis, Gel, Pulsed-FieldFemaleGene DeletionGene DosageGene Expression Regulation, DevelopmentalGenetic MarkersGenomic ImprintingHumansIn Situ HybridizationLigasesMaleMiceMice, Mutant StrainsMolecular Sequence DataPaternityPrader-Willi SyndromeSequence Homology, Amino AcidSequence Homology, Nucleic AcidTissue DistributionTranscription, GeneticTranslocation, GeneticUbiquitin-Protein LigasesConceptsLigase geneUbiquitin protein ligase geneAngelman syndromeEntire transcriptional unitCandidate regionsMaternal-specific expressionE6-AP ubiquitinTranscriptional unitsPaternal deficiencyRT-PCR analysisMouse homologPrader-Willi syndromePaternal uniparental disomyPhysical mapDe novo truncating mutationsNovo truncating mutationsRecent identificationUBE3A locusMouse tissuesGenesUbe3a expressionLociUniparental disomyProtein levelsAS region