Featured Publications
Mitochondrial DNA and the STING pathway are required for hepatic stellate cell activation
Arumugam S, Li B, Boodapati S, Nathanson M, Sun B, Ouyang X, Mehal W. Mitochondrial DNA and the STING pathway are required for hepatic stellate cell activation. Hepatology 2023, 78: 1448-1461. PMID: 37013923, PMCID: PMC10804318, DOI: 10.1097/hep.0000000000000388.Peer-Reviewed Original ResearchConceptsVoltage-dependent anion channelBioenergetic capacityMitochondrial DNATranscriptional upregulationCyclic GMP-AMP synthaseGMP-AMP synthaseTranscriptional regulationBioenergetic organellesFunctional mitochondriaMitochondrial membraneExternal mitochondrial membraneAnabolic pathwaysMitochondrial massAnion channelInterferon genesHSC transdifferentiationSubsequent activationCGAS-STINGTransdifferentiationIRF3 pathwayPathwaySTING pathwayGenesMitochondriaQuiescent HSCsAdenosine is required for sustained inflammasome activation via the A2A receptor and the HIF-1α pathway
Ouyang X, Ghani A, Malik A, Wilder T, Colegio OR, Flavell RA, Cronstein BN, Mehal WZ. Adenosine is required for sustained inflammasome activation via the A2A receptor and the HIF-1α pathway. Nature Communications 2013, 4: 2909. PMID: 24352507, PMCID: PMC3895487, DOI: 10.1038/ncomms3909.Peer-Reviewed Original ResearchMeSH KeywordsAdenosineAdenosine TriphosphateAnimalsCarrier ProteinsCyclic AMPCyclic AMP Response Element-Binding ProteinCyclic AMP-Dependent Protein KinasesHypoxia-Inducible Factor 1, alpha SubunitInflammasomesInterleukin-1betaLipopolysaccharidesLiverMacrophagesMaleMiceMice, Inbred C57BLNLR Family, Pyrin Domain-Containing 3 ProteinReceptor, Adenosine A2ASignal TransductionConceptsHIF-1α pathwayInflammasome activityInflammasome activationA2A receptorsIL-1β productionIL-1β responseReceptor-mediated signalingLack of responseTolerogenic stateChronic diseasesInflammatory responseInflammasome pathwayPrevious exposureLipopolysaccharideAdenosineReceptorsActivationKey regulatorInitial activationPathwaySignalingResponseInterleukinStimuliDisease
2007
Cooperation between MyD88 and TRIF pathways in TLR synergy via IRF5 activation
Ouyang X, Negishi H, Takeda R, Fujita Y, Taniguchi T, Honda K. Cooperation between MyD88 and TRIF pathways in TLR synergy via IRF5 activation. Biochemical And Biophysical Research Communications 2007, 354: 1045-1051. PMID: 17275788, DOI: 10.1016/j.bbrc.2007.01.090.Peer-Reviewed Original ResearchConceptsToll-like receptorsInterferon regulatory factor 5TLR synergyTRIF pathwayImmune systemMultiple Toll-like receptorsTranscription factor interferon regulatory factor 5Regulatory factor 5Agonist combinationsImmune cellsMyD88 adaptorInnate immunityIRF5 activationTRIF adaptorMyD88Synergistic inductionActivationFactor 5Target genesCross talkCellsAgonistsTRIFPathwayImmunity
2006
Evidence for licensing of IFN-γ-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program
Negishi H, Fujita Y, Yanai H, Sakaguchi S, Ouyang X, Shinohara M, Takayanagi H, Ohba Y, Taniguchi T, Honda K. Evidence for licensing of IFN-γ-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proceedings Of The National Academy Of Sciences Of The United States Of America 2006, 103: 15136-15141. PMID: 17018642, PMCID: PMC1586247, DOI: 10.1073/pnas.0607181103.Peer-Reviewed Original ResearchConceptsTranscription factorsTarget genesIFN regulatory factor (IRF) familyToll-like receptorsFactor-1 transcription factorRegulatory factor familyIFN-gammaTransduction pathwaysFactor familyTLR-MyD88 pathwayAdditional membersMicrobial componentsIRF1Mechanistic insightsMyD88 adaptorInducible NO synthaseGenesCritical roleTLR signalingPathwayIL-12p35TLR activationNO synthaseIFN-betaMyD88