2023
MKP1 promotes nonalcoholic steatohepatitis by suppressing AMPK activity through LKB1 nuclear retention
Qiu B, Lawan A, Xirouchaki C, Yi J, Robert M, Zhang L, Brown W, Fernández-Hernando C, Yang X, Tiganis T, Bennett A. MKP1 promotes nonalcoholic steatohepatitis by suppressing AMPK activity through LKB1 nuclear retention. Nature Communications 2023, 14: 5405. PMID: 37669951, PMCID: PMC10480499, DOI: 10.1038/s41467-023-41145-5.Peer-Reviewed Original Research
2020
O-GlcNAc transferase inhibits visceral fat lipolysis and promotes diet-induced obesity
Yang Y, Fu M, Li MD, Zhang K, Zhang B, Wang S, Liu Y, Ni W, Ong Q, Mi J, Yang X. O-GlcNAc transferase inhibits visceral fat lipolysis and promotes diet-induced obesity. Nature Communications 2020, 11: 181. PMID: 31924761, PMCID: PMC6954210, DOI: 10.1038/s41467-019-13914-8.Peer-Reviewed Original ResearchMeSH KeywordsAcetylglucosamineAnimalsCell Line, TumorDietFastingGene DeletionHEK293 CellsHeLa CellsHomeostasisHumansIntra-Abdominal FatLipolysisMaleMiceMice, Inbred C3HMice, Inbred C57BLMice, KnockoutN-AcetylglucosaminyltransferasesObesityPerilipin-1PhosphorylationProtein Processing, Post-TranslationalSignal TransductionConceptsDiet-induced obesityVisceral fatExcessive visceral fat accumulationPerilipin 1Visceral fat accumulationVisceral fat lossTreatment of obesityPrimary risk factorAdipose tissue homeostasisUnhealthy obesityRisk factorsEnhanced lipolysisInhibits lipolysisFat accumulationO-GlcNAcylationFat lossObesityFat lipolysisRelated diseasesLipolysisInducible deletionLipid dropletsHexosamine biosynthetic pathwayFatTissue homeostasis
2019
O-GlcNAc transferase suppresses necroptosis and liver fibrosis
Zhang B, Li MD, Yin R, Liu Y, Yang Y, Mitchell-Richards KA, Nam JH, Li R, Wang L, Iwakiri Y, Chung D, Robert ME, Ehrlich BE, Bennett AM, Yu J, Nathanson MH, Yang X. O-GlcNAc transferase suppresses necroptosis and liver fibrosis. JCI Insight 2019, 4: e127709. PMID: 31672932, PMCID: PMC6948774, DOI: 10.1172/jci.insight.127709.Peer-Reviewed Original ResearchConceptsReceptor-interacting protein kinase 3Liver fibrosisLiver diseaseHepatocyte necroptosisEthanol-induced liver injuryAlcoholic liver cirrhosisChronic liver diseaseMultiple liver diseasesWeeks of ageProtein expression levelsPortal inflammationLiver cirrhosisLiver injuryBallooning degenerationElevated protein expression levelsSpontaneous genetic modelFibrosisKey suppressorKey mediatorMiceProtein kinase 3CirrhosisExpression levelsGlcNAc levelsMixed lineage kinaseO-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth
Singh JP, Qian K, Lee JS, Zhou J, Han X, Zhang B, Ong Q, Ni W, Jiang M, Ruan HB, Li MD, Zhang K, Ding Z, Lee P, Singh K, Wu J, Herzog RI, Kaech S, Wendel HG, Yates JR, Han W, Sherwin RS, Nie Y, Yang X. O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth. Oncogene 2019, 39: 560-573. PMID: 31501520, PMCID: PMC7107572, DOI: 10.1038/s41388-019-0975-3.Peer-Reviewed Original ResearchMeSH KeywordsAcetylationAcetylglucosamineAnimalsAntigens, NeoplasmCarrier ProteinsCell Line, TumorDatasets as TopicDisease ProgressionFemaleGene Expression ProfilingGlycolysisHEK293 CellsHistone AcetyltransferasesHumansHyaluronoglucosaminidaseMaleMembrane ProteinsMiceN-AcetylglucosaminyltransferasesNeoplasm GradingNeoplasm StagingNeoplasmsProtein Processing, Post-TranslationalThyroid HormonesTissue Array AnalysisUp-RegulationXenograft Model Antitumor AssaysConceptsPyruvate kinase M2O-GlcNAcaseAerobic glycolysisO-GlcNAcylationKinase M2Lysine acetyltransferase activityTumor growthMetabolic rheostatAcetyltransferase activityGlcNAc transferaseMolecular basisMetabolic shiftHuman cancersGlycolysisCancer cellsHigh glucose conditionsGlucose availabilityTumor progressionGlucose conditionsExquisite controlGrowthRheostatCausative roleTargetEnzyme
2018
Adipocyte OGT governs diet-induced hyperphagia and obesity
Li MD, Vera NB, Yang Y, Zhang B, Ni W, Ziso-Qejvanaj E, Ding S, Zhang K, Yin R, Wang S, Zhou X, Fang EX, Xu T, Erion DM, Yang X. Adipocyte OGT governs diet-induced hyperphagia and obesity. Nature Communications 2018, 9: 5103. PMID: 30504766, PMCID: PMC6269424, DOI: 10.1038/s41467-018-07461-x.Peer-Reviewed Original ResearchConceptsSerine/threonine residuesN-acetylglucosamine transferaseNutrient cuesThreonine residuesTranscriptional activationO-GlcNAcylationLipid desaturationIntracellular proteinsOGTHigh-fat diet-induced hyperphagiaDevelopment of obesityBaseline food intakeSignaling contributesLipid signalsCB1 signalingBrain axisChronic dysregulationFood intakeMetabolic diseasesPalatable foodPharmacological manipulationHyperphagiaObesityFat sensorSignaling
2014
O-GlcNAc Transferase Enables AgRP Neurons to Suppress Browning of White Fat
Ruan HB, Dietrich MO, Liu ZW, Zimmer MR, Li MD, Singh JP, Zhang K, Yin R, Wu J, Horvath TL, Yang X. O-GlcNAc Transferase Enables AgRP Neurons to Suppress Browning of White Fat. Cell 2014, 159: 306-317. PMID: 25303527, PMCID: PMC4509746, DOI: 10.1016/j.cell.2014.09.010.Peer-Reviewed Original ResearchConceptsAgRP neuronsFundamental cellular processesWhite fatN-acetylglucosamine (O-GlcNAc) modificationOrexigenic AgRP neuronsVoltage-dependent potassium channelsCellular processesGlcNAc transferaseDynamic physiological processesNuclear proteinsWhite adipose tissue browningPhysiological processesAdipose tissue browningDiet-induced obesityPhysiological relevanceTissue browningGenetic ablationBeige cellsEnergy metabolismInsulin resistanceNeuronal excitabilityPotassium channelsAdipose tissueCentral mechanismsNeurons
2008
Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance
Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F, So WV, Kudlow JE, Michell RH, Olefsky JM, Field SJ, Evans RM. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 2008, 451: 964-969. PMID: 18288188, DOI: 10.1038/nature06668.Peer-Reviewed Original ResearchMeSH KeywordsAcetylglucosamineAnimalsCell MembraneChlorocebus aethiopsCOS CellsInsulinInsulin ResistanceLipid MetabolismLiverMaleMiceMice, Inbred C57BLN-AcetylglucosaminyltransferasesPhosphatidylinositol PhosphatesPhosphatidylinositolsPhosphorylationProtein Structure, TertiaryProtein TransportSecond Messenger SystemsConceptsO-GlcNAcSignal transductionPhosphoinositide-binding domainsPost-translational modificationsO-GlcNAc transferaseHexosamine biosynthetic pathwayInsulin signal transductionInsulin-responsive genesCellular regulationGlcNAc transferaseNutritional cuesNuclear proteinsBiosynthetic pathwayPlasma membraneProtein degradationNutrient sensorMolecular mechanismsN-acetylglucosamineTransductionPathwayTransferaseHepatic overexpressionGlucose fluxDynamic modificationMetabolic status
2006
Nuclear Receptor Expression Links the Circadian Clock to Metabolism
Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, Mangelsdorf DJ, Evans RM. Nuclear Receptor Expression Links the Circadian Clock to Metabolism. Cell 2006, 126: 801-810. PMID: 16923398, DOI: 10.1016/j.cell.2006.06.050.Peer-Reviewed Original ResearchConceptsNuclear receptor expressionReceptor expressionFat-soluble hormoneBrown adipose tissueKey metabolic tissuesPeripheral circadian clocksGlucose metabolismAdipose tissueDietary lipidsThyroid hormonesMetabolic tissuesKey target genesSkeletal muscleOrphan receptorNuclear receptorsEnergy metabolismNovel roleBasal metabolismHormoneMetabolismReceptorsCircadian clockExpression profilesMouse nuclear receptorsCircadian entrainment