2019
Altered allostery of the left flipper domain underlies the weak ATP response of rat P2X5 receptors
Sun L, Liu Y, Wang J, Huang L, Yang Y, Cheng X, Fan Y, Zhu M, Liang H, Tian Y, Wang H, Guo C, Yu Y. Altered allostery of the left flipper domain underlies the weak ATP response of rat P2X5 receptors. Journal Of Biological Chemistry 2019, 294: 19589-19603. PMID: 31727741, PMCID: PMC6926468, DOI: 10.1074/jbc.ra119.009959.Peer-Reviewed Original ResearchConceptsFuture transgenic studiesFull-length variantATP responseTransmembrane domainTransgenic studiesMammalian speciesP2X5 receptorsAllosteryPathological functionsSingle replacementSingle-channel recordingsSkeletal muscleExon 10Molecular modelingFunctional subtypesATPResiduesNervous systemP2X5ReceptorsDomainMammalsSpeciesTM2Lack of knowledge
2014
Relative motions between left flipper and dorsal fin domains favour P2X4 receptor activation
Zhao W, Wang J, Ma X, Yang Y, Liu Y, Huang L, Fan Y, Cheng X, Chen H, Wang R, Yu Y. Relative motions between left flipper and dorsal fin domains favour P2X4 receptor activation. Nature Communications 2014, 5: 4189. PMID: 24943126, DOI: 10.1038/ncomms5189.Peer-Reviewed Original ResearchConceptsAllosteric changesChannel gatingLeft flipperP2X4 receptorDorsal fin domainAllosteric eventsP2X4 receptor activationPhysiological functionsResidues leadFin domainHydrophobic interactionsEssential roleExtracellular ATPFundamental processesZinc bridgesChannel activationReceptor activationDorsal finP2X receptorsReceptorsGatingDomainActivationL217V291
2011
CaV1.2 Channel N-terminal Splice Variants Modulate Functional Surface Expression in Resistance Size Artery Smooth Muscle Cells*
Bannister J, Thomas-Gatewood C, Neeb Z, Adebiyi A, Cheng X, Jaggar J. CaV1.2 Channel N-terminal Splice Variants Modulate Functional Surface Expression in Resistance Size Artery Smooth Muscle Cells*. Journal Of Biological Chemistry 2011, 286: 15058-15066. PMID: 21357696, PMCID: PMC3083159, DOI: 10.1074/jbc.m110.182816.Peer-Reviewed Original ResearchConceptsArterial smooth muscle cellsSmooth muscle cellsMuscle cellsSurface expressionIntravascular pressureSmooth muscle-specific expressionArtery smooth muscle cellsDepolarization-induced vasoconstrictionHuman cerebral arteriesWhole-cell currentsReduced surface expressionLarge vasodilationCerebral arteryInflux pathwayVariety of stimuliCardiovascular systemFunctional surface expressionVasodilationProximal N-terminusReduced expressionMuscle-specific expressionE1CAuxiliary subunitsKnockdownPhysiological functions
2009
Alternative splicing of Cav1.2 channel exons in smooth muscle cells of resistance-size arteries generates currents with unique electrophysiological properties
Cheng X, Pachuau J, Blaskova E, Asuncion-Chin M, Liu J, Dopico A, Jaggar J. Alternative splicing of Cav1.2 channel exons in smooth muscle cells of resistance-size arteries generates currents with unique electrophysiological properties. AJP Heart And Circulatory Physiology 2009, 297: h680-h688. PMID: 19502562, PMCID: PMC2724194, DOI: 10.1152/ajpheart.00109.2009.Peer-Reviewed Original ResearchAlternative SplicingAmino Acid SequenceAnimalsBase SequenceCalcium Channels, L-TypeCells, CulturedCerebral ArteriesCerebrovascular CirculationExonsMolecular Sequence DataMuscle, Smooth, VascularMyocytes, Smooth MusclePatch-Clamp TechniquesProtein Structure, TertiaryRatsRats, Sprague-DawleyVascular Resistance
2007
A Novel CaV1.2 N Terminus Expressed in Smooth Muscle Cells of Resistance Size Arteries Modifies Channel Regulation by Auxiliary Subunits*
Cheng X, Liu J, Asuncion-Chin M, Blaskova E, Bannister J, Dopico A, Jaggar J. A Novel CaV1.2 N Terminus Expressed in Smooth Muscle Cells of Resistance Size Arteries Modifies Channel Regulation by Auxiliary Subunits*. Journal Of Biological Chemistry 2007, 282: 29211-29221. PMID: 17699517, PMCID: PMC2276565, DOI: 10.1074/jbc.m610623200.Peer-Reviewed Original ResearchConceptsExon 1cN-terminusExon 1bAuxiliary subunitsRich N-terminusCysteine-rich N-terminusNovel alternative splicingResistance-size cerebral arteriesPlasma membrane insertionExon 1Arterial myocytesMultiple vascular functionsIsoform-dependent differencesWhole-cell current densityN-terminal variantsAlternative splicingMembrane insertionChannel regulationExon 1AMolecular identityHuman diseasesSubunitsTerminusEntry pathwaySmooth muscle cells
2002
Effect of Zinc Ions on Caffeine-Induced Contracture in Vascular Smooth Muscle and Skeletal Mu-scle of Rat
Cheng X, Chen K, Zhang X, Zhu P. Effect of Zinc Ions on Caffeine-Induced Contracture in Vascular Smooth Muscle and Skeletal Mu-scle of Rat. Cellular Physiology And Biochemistry 2002, 12: 119-126. PMID: 12077557, DOI: 10.1159/000063788.Peer-Reviewed Original ResearchConceptsVascular smooth muscleSmooth muscleCaffeine contractureCaffeine exposureSkeletal muscleCaffeine-induced contracturesDose-dependent mannerAortic stripsContractureIntracellular Ca2MuscleActivation dependenceMin intervalsRatsCaffeine concentrationsDepressionExposureMicroMPossible mechanismPotentiationSmall bundles