2024
Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice
Gratton J, Lin M, Yu J, Weiss E, Jiang Z, Fairchild T, Iwakiri Y, Groszmann R, Claffey K, Cheng Y, Sessa W. Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell 2024, 42: 1127. PMID: 38821059, DOI: 10.1016/j.ccell.2024.05.009.Peer-Reviewed Original Research
2023
Genetic or therapeutic neutralization of ALK1 reduces LDL transcytosis and atherosclerosis in mice
Lee S, Schleer H, Park H, Jang E, Boyer M, Tao B, Gamez-Mendez A, Singh A, Folta-Stogniew E, Zhang X, Qin L, Xiao X, Xu L, Zhang J, Hu X, Pashos E, Tellides G, Shaul P, Lee W, Fernandez-Hernando C, Eichmann A, Sessa W. Genetic or therapeutic neutralization of ALK1 reduces LDL transcytosis and atherosclerosis in mice. Nature Cardiovascular Research 2023, 2: 438-448. PMID: 39196046, PMCID: PMC11358031, DOI: 10.1038/s44161-023-00266-2.Peer-Reviewed Original ResearchLDL transcytosisLDL receptor knockout miceReceptor knockout miceAtherosclerotic cardiovascular diseaseLow-density lipoprotein accumulationHigh-fat dietPromising therapeutic strategyTherapeutic neutralizationMacrophage infiltrationTriglyceride levelsLDL entryCardiovascular diseaseSelective monoclonal antibodiesLipoprotein accumulationTherapeutic strategiesKnockout micePlaque formationAtherosclerosis initiationType 1Genetic deletionArterial wallMonoclonal antibodiesEndothelial cellsLDL accumulationMice
2015
Endothelial Glucocorticoid Receptor Suppresses Atherogenesis—Brief Report
Goodwin JE, Zhang X, Rotllan N, Feng Y, Zhou H, Fernández-Hernando C, Yu J, Sessa WC. Endothelial Glucocorticoid Receptor Suppresses Atherogenesis—Brief Report. Arteriosclerosis Thrombosis And Vascular Biology 2015, 35: 779-782. PMID: 25810297, PMCID: PMC4375730, DOI: 10.1161/atvbaha.114.304525.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaAortic DiseasesApolipoproteins EAtherosclerosisBody WeightBrachiocephalic TrunkCholesterolDiet, High-FatDisease Models, AnimalEndothelial CellsGenotypeMacrophagesMice, Inbred C57BLMice, KnockoutPhenotypeReceptors, GlucocorticoidSeverity of Illness IndexTime FactorsTriglyceridesConceptsEndothelial glucocorticoid receptorGlucocorticoid receptorHigh-fat diet feedingApoE knockout backgroundSevere atherosclerotic lesionsGroups of micePathogenesis of atherosclerosisAortic sinusTotal cholesterolAtherosclerosis progressionBrachiocephalic arteryControl miceInflammatory milieuTonic inhibitionDiet feedingMacrophage recruitmentAtherosclerotic lesionsBody weightMiceKnockout backgroundReceptorsLesionsAtherosclerosisInflammationArtery
2010
Telmisartan regresses left ventricular hypertrophy in caveolin-1-deficient mice
Kreiger M, Di Lorenzo A, Teutsch C, Kauser K, Sessa WC. Telmisartan regresses left ventricular hypertrophy in caveolin-1-deficient mice. Laboratory Investigation 2010, 90: 1573-1581. PMID: 20585312, PMCID: PMC3248785, DOI: 10.1038/labinvest.2010.116.Peer-Reviewed Original ResearchConceptsCav-1 KO miceAngiotensin receptor blockersKO miceCardiac functionLV hypertrophyWT miceCardiac hypertrophyΒ-myosin heavy chainBody weight ratioTibial length ratioNatriuretic peptide ACaveolin-1-deficient miceCav-1 KOReceptor blockersPerivascular fibrosisVentricular hypertrophyVentricular weightAngiotensin IIIntramyocardial vesselsSpontaneous modelUnique genetic modelHypertrophyMiceTreatmentCaveolin-1
2000
Temporal Events Underlying Arterial Remodeling After Chronic Flow Reduction in Mice
Rudic R, Bucci M, Fulton D, Segal S, Sessa W. Temporal Events Underlying Arterial Remodeling After Chronic Flow Reduction in Mice. Circulation Research 2000, 86: 1160-1166. PMID: 10850968, DOI: 10.1161/01.res.86.11.1160.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarotid Artery, CommonCell DeathDrug CombinationsIn Vitro TechniquesMaleMiceMice, Inbred C57BLMuscle, Smooth, VascularNitric OxideNitric Oxide SynthaseNitric Oxide Synthase Type IINitric Oxide Synthase Type IIIRegional Blood FlowTime FactorsTunica MediaVasodilator AgentsVasomotor SystemConceptsLeft common carotid arteryRight common carotid arteryCommon carotid arteryCarotid arteryBlood flowLeft external carotid arteryEndothelial NO synthase (eNOS) functionEndothelial NO synthase (eNOS) mRNAExternal carotid arteryNO synthase mRNANitrovasodilator sodium nitroprussideAcute ligationEndothelial dysfunctionArterial remodelingControl arteriesVascular remodelingAdult miceSodium nitroprussideDay 7Structural remodelingArteryLuminal remodelingMarked reductionProtein levelsMice
1999
Molecular control of nitric oxide synthases in the cardiovascular system
Papapetropoulos A, Rudic R, Sessa W. Molecular control of nitric oxide synthases in the cardiovascular system. Cardiovascular Research 1999, 43: 509-520. PMID: 10690323, DOI: 10.1016/s0008-6363(99)00161-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood PressureCardiovascular DiseasesCardiovascular SystemCentral Nervous SystemGene Expression RegulationHomeostasisHumansImmune SystemMiceMice, KnockoutNeovascularization, PathologicNitric OxideNitric Oxide SynthaseNitric Oxide Synthase Type INitric Oxide Synthase Type IINitric Oxide Synthase Type IIIRatsVasomotor SystemA vascular bed–specific pathway regulates cardiac expression of endothelial nitric oxide synthase
Guillot P, Guan J, Liu L, Kuivenhoven J, Rosenberg R, Sessa W, Aird W. A vascular bed–specific pathway regulates cardiac expression of endothelial nitric oxide synthase. Journal Of Clinical Investigation 1999, 103: 799-805. PMID: 10079100, PMCID: PMC408151, DOI: 10.1172/jci6017.Peer-Reviewed Original ResearchConceptsEndothelial nitric oxide synthase geneEndothelial nitric oxide synthaseMurine endothelial progenitor cellsGrowth factor antibodyNitric oxide synthase geneNitric oxide synthaseEndothelial progenitor cellsOxide synthase geneFactor antibodyOxide synthaseVascular bedResponse elementCardiac expressionTransgenic micePDGF-ABCardiac endotheliumEno expressionCardiac myocytesSkeletal muscleProgenitor cellsSkeletal myocytesEndotheliumMiceBrainBeta-galactosidase activity