2013
Whole-exome sequencing identifies a novel somatic mutation in MMP8 associated with a t(1;22)-acute megakaryoblastic leukemia
Kim Y, Schulz VP, Satake N, Gruber TA, Teixeira AM, Halene S, Gallagher PG, Krause DS. Whole-exome sequencing identifies a novel somatic mutation in MMP8 associated with a t(1;22)-acute megakaryoblastic leukemia. Leukemia 2013, 28: 945-948. PMID: 24157583, PMCID: PMC3981934, DOI: 10.1038/leu.2013.314.Peer-Reviewed Original Research
2006
Allelic dropout in long QT syndrome genetic testing: A possible mechanism underlying false-negative results
Tester D, Cronk L, Carr J, Schulz V, Salisbury B, Judson R, Ackerman M. Allelic dropout in long QT syndrome genetic testing: A possible mechanism underlying false-negative results. Heart Rhythm 2006, 3: 815-821. PMID: 16818214, DOI: 10.1016/j.hrthm.2006.03.016.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAllelesChildChromatography, High Pressure LiquidDNADNA Mutational AnalysisERG1 Potassium ChannelEther-A-Go-Go Potassium ChannelsExonsFalse Negative ReactionsFemaleGene FrequencyHumansKCNQ1 Potassium ChannelLong QT SyndromeMaleMuscle ProteinsMutationNAV1.5 Voltage-Gated Sodium ChannelPolymerase Chain ReactionPolymorphism, Single NucleotidePotassium Channels, Voltage-GatedRetrospective StudiesSodium ChannelsConceptsLong QT syndromeGenetic testingSingle nucleotide polymorphismsIntronic single nucleotide polymorphismLQTS-causing mutationsCongenital long QT syndromeCommon intronic single nucleotide polymorphismHigh clinical probabilityLong QT syndrome genetic testingLQTS genetic testingCardiac channel genes
2005
The Pattern of Polymorphism in Arabidopsis thaliana
Nordborg M, Hu T, Ishino Y, Jhaveri J, Toomajian C, Zheng H, Bakker E, Calabrese P, Gladstone J, Goyal R, Jakobsson M, Kim S, Morozov Y, Padhukasahasram B, Plagnol V, Rosenberg N, Shah C, Wall J, Wang J, Zhao K, Kalbfleisch T, Schulz V, Kreitman M, Bergelson J. The Pattern of Polymorphism in Arabidopsis thaliana. PLOS Biology 2005, 3: e196. PMID: 15907155, PMCID: PMC1135296, DOI: 10.1371/journal.pbio.0030196.Peer-Reviewed Original ResearchMeSH KeywordsArabidopsisGene FrequencyGenetics, PopulationPolymorphism, GeneticPolymorphism, Single NucleotideConceptsPatterns of polymorphismA. thalianaArabidopsis thalianaEvolutionary functional genomicsLinkage disequilibrium decayGenome-wide excessLevel of polymorphismStandard neutral modelDisequilibrium decayFunctional genomicsGene densityNatural populationsSegmental duplicationsGenomic regionsNatural selectionPopulation structureThalianaPolymorphism dataNeutral modelTheoretical null distributionRare allelesShort fragmentsPolymorphismWide surveyGenomics
2001
Haplotype Variation and Linkage Disequilibrium in 313 Human Genes
Stephens J, Schneider J, Tanguay D, Choi J, Acharya T, Stanley S, Jiang R, Messer C, Chew A, Han J, Duan J, Carr J, Lee M, Koshy B, Kumar A, Zhang G, Newell W, Windemuth A, Xu C, Kalbfleisch T, Shaner S, Arnold K, Schulz V, Drysdale C, Nandabalan K, Judson R, Ruaño G, Vovis G. Haplotype Variation and Linkage Disequilibrium in 313 Human Genes. Science 2001, 293: 489-493. PMID: 11452081, DOI: 10.1126/science.1059431.Peer-Reviewed Original ResearchConceptsSingle nucleotide polymorphismsPairs of SNPsLinkage disequilibriumVariable single nucleotide polymorphismsPatterns of variationIndividual single nucleotide polymorphismsHaplotype variationBiological traitsHuman genesDiverse ancestryDifferent haplotypesGenesNucleotide polymorphismsHuman populationUnrelated individualsHaplotypesRecent expansionPopulation frequencyDisequilibriumTraitsAncestryImportant implicationsInformation contentPolymorphismPopulation