2018
Fast, in vivo voltage imaging using a red fluorescent indicator
Kannan M, Vasan G, Huang C, Haziza S, Li JZ, Inan H, Schnitzer MJ, Pieribone VA. Fast, in vivo voltage imaging using a red fluorescent indicator. Nature Methods 2018, 15: 1108-1116. PMID: 30420685, PMCID: PMC6516062, DOI: 10.1038/s41592-018-0188-7.Peer-Reviewed Original ResearchConceptsOptical toolsOptical toolboxUnparalleled temporal resolutionRed fluorescent indicatorVoltage imagingOptical electrophysiologyModest illumination intensitiesHigh-throughput strategyVoltage indicatorsIllumination intensityNew hueAcute brain slicesMultispectral imagingGreen probesSubthreshold voltageTemporal resolutionEnhanced sensitivityPostsynaptic potentialsMRuby3Brain slicesHippocampal rhythmsActivity monitorFunctional imagingImagingGEVIs
2016
A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices
Abdelfattah AS, Farhi SL, Zhao Y, Brinks D, Zou P, Ruangkittisakul A, Platisa J, Pieribone VA, Ballanyi K, Cohen AE, Campbell RE. A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices. Journal Of Neuroscience 2016, 36: 2458-2472. PMID: 26911693, PMCID: PMC4764664, DOI: 10.1523/jneurosci.3484-15.2016.Peer-Reviewed Original ResearchConceptsVoltage indicatorsBlue-shifted channelrhodopsinRed-shifted fluorescent proteinsFluorescent voltage indicatorsWide-field fluorescence microscopyBlue excitationOptical imagingOptical electrophysiologyLow phototoxicityAutofluorescent backgroundLight photoactivationSingle-trial recordingsTemporal resolutionChannelrhodopsinIntrinsic advantagesExcitationVoltage oscillationsFluorescence microscopyOscillationsGreen indicatorsChromophoreMicroscopyResolution
2014
Mechanistic Studies of the Genetically Encoded Fluorescent Protein Voltage Probe ArcLight
Han Z, Jin L, Chen F, Loturco JJ, Cohen LB, Bondar A, Lazar J, Pieribone VA. Mechanistic Studies of the Genetically Encoded Fluorescent Protein Voltage Probe ArcLight. PLOS ONE 2014, 9: e113873. PMID: 25419571, PMCID: PMC4242678, DOI: 10.1371/journal.pone.0113873.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAmino AcidsAnimalsCells, CulturedFluorescenceFluorescent DyesGreen Fluorescent ProteinsHEK293 CellsHumansHydrogen-Ion ConcentrationKineticsLuminescent ProteinsMembrane PotentialsMicroscopy, ConfocalMutation, MissenseNeuronsPatch-Clamp TechniquesPrenylationRatsRecombinant Fusion ProteinsSpectrometry, Fluorescence
2012
Design Constraints for Mobile, High-Speed Fluorescence Brain Imaging in Awake Animals
Osman A, Park JH, Dickensheets D, Platisa J, Culurciello E, Pieribone VA. Design Constraints for Mobile, High-Speed Fluorescence Brain Imaging in Awake Animals. IEEE Transactions On Biomedical Circuits And Systems 2012, 6: 446-453. PMID: 23853231, DOI: 10.1109/tbcas.2012.2226174.Peer-Reviewed Original ResearchSingle Action Potentials and Subthreshold Electrical Events Imaged in Neurons with a Fluorescent Protein Voltage Probe
Jin L, Han Z, Platisa J, Wooltorton JR, Cohen LB, Pieribone VA. Single Action Potentials and Subthreshold Electrical Events Imaged in Neurons with a Fluorescent Protein Voltage Probe. Neuron 2012, 75: 779-785. PMID: 22958819, PMCID: PMC3439164, DOI: 10.1016/j.neuron.2012.06.040.Peer-Reviewed Original ResearchGenetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics
Baker BJ, Jin L, Han Z, Cohen LB, Popovic M, Platisa J, Pieribone V. Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics. Journal Of Neuroscience Methods 2012, 208: 190-196. PMID: 22634212, PMCID: PMC3398169, DOI: 10.1016/j.jneumeth.2012.05.016.Peer-Reviewed Original Research
2011
Random insertion of split-cans of the fluorescent protein venus into Shaker channels yields voltage sensitive probes with improved membrane localization in mammalian cells
Jin L, Baker B, Mealer R, Cohen L, Pieribone V, Pralle A, Hughes T. Random insertion of split-cans of the fluorescent protein venus into Shaker channels yields voltage sensitive probes with improved membrane localization in mammalian cells. Journal Of Neuroscience Methods 2011, 199: 1-9. PMID: 21497167, PMCID: PMC3281265, DOI: 10.1016/j.jneumeth.2011.03.028.Peer-Reviewed Original ResearchMeSH KeywordsBacterial ProteinsCell LineCell Line, TumorCell MembraneCytosolDNA Transposable ElementsFluorescent DyesHumansKidneyLuminescent ProteinsMembrane PotentialsMembrane ProteinsMicroscopy, ConfocalMicroscopy, FluorescenceModels, MolecularMutation, MissenseNeuroblastomaPatch-Clamp TechniquesPeptide FragmentsProtein FoldingProtein MultimerizationProtein Structure, SecondaryProtein Structure, TertiaryRecombinant Fusion ProteinsShaker Superfamily of Potassium ChannelsTransfectionConceptsShaker subunitsYellow fluorescent proteinEndoplasmic reticulumMammalian cellsNon-fluorescent halvesMisfolded monomersPlasma membrane expressionFluorescent protein VenusShaker potassium channelFluorescent protein (FP) voltage sensorsMembrane localizationPlasma membraneFluorescent proteinRandom insertionMembrane expressionSubunitsMembrane potentialIntracellular fluorescencePotassium channelsCellsFluorescent probeΔF/FVoltage sensorTetramerizationProtein
2006
Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells
Baker BJ, Lee H, Pieribone VA, Cohen LB, Isacoff EY, Knopfel T, Kosmidis EK. Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells. Journal Of Neuroscience Methods 2006, 161: 32-38. PMID: 17126911, DOI: 10.1016/j.jneumeth.2006.10.005.Peer-Reviewed Original Research
2002
A Genetically Targetable Fluorescent Probe of Channel Gating with Rapid Kinetics
Ataka K, Pieribone VA. A Genetically Targetable Fluorescent Probe of Channel Gating with Rapid Kinetics. Biophysical Journal 2002, 82: 509-516. PMID: 11751337, PMCID: PMC1302490, DOI: 10.1016/s0006-3495(02)75415-5.Peer-Reviewed Original ResearchConceptsGreen fluorescent proteinFluorescent proteinSkeletal muscle voltage-gated sodium channelVoltage-gated sodium channelsActivity reporterIntracellular loopChannel gatingTargetable fluorescent probeExcitable cellsFluorescent activity reportersMembrane potential changesExtended depolarizationSkeletal muscleReporterProteinSodium channelsChannel movementFluorescence signalRapid kineticsFluorescent probeCharge movementFluorescence
1991
Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat
van Bockstaele E, Aston‐Jones G, Pieribone V, Ennis M, Shipley M. Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat. The Journal Of Comparative Neurology 1991, 309: 305-327. PMID: 1717516, DOI: 10.1002/cne.903090303.Peer-Reviewed Original ResearchConceptsVentromedial periaqueductal grayDorsal periaqueductal grayPeriaqueductal grayVentrolateral periaqueductal grayVentromedial partWheat germ agglutinin-conjugated horseradish peroxidaseAgglutinin-conjugated horseradish peroxidaseDistinct fiber pathwaysRetrograde tracing resultsRostral ventral medullaEdinger-Westphal nucleusDorsomedial periaqueductal graySupraoculomotor nucleusDistinct subregionsNucleus paragigantocellularisVentrolateral medullaVentral medullaPAG neuronsNucleus ambiguusFluoro-GoldRetrograde tracerCentral grayInnervation patternAnterograde labelingAnterograde tracerAdrenergic innervation of the rat nucleus locus coeruleus arises predominantly from the C1 adrenergic cell group in the rostral medulla
Pieribone VA, Aston-Jones G. Adrenergic innervation of the rat nucleus locus coeruleus arises predominantly from the C1 adrenergic cell group in the rostral medulla. Neuroscience 1991, 41: 525-542. PMID: 1714551, DOI: 10.1016/0306-4522(91)90346-p.Peer-Reviewed Original Research
1989
Diverse afferents converge on the nucleus paragigantocellularis in the rat ventrolateral medulla: Retrograde and anterograde tracing studies
Van Bockstaele E, Pieribone V, Aston‐Jones G. Diverse afferents converge on the nucleus paragigantocellularis in the rat ventrolateral medulla: Retrograde and anterograde tracing studies. The Journal Of Comparative Neurology 1989, 290: 561-584. PMID: 2482306, DOI: 10.1002/cne.902900410.Peer-Reviewed Original ResearchConceptsWheat germ agglutinin-conjugated horseradish peroxidaseAgglutinin-conjugated horseradish peroxidaseNucleus paragigantocellularisVentrolateral medullaSolitary tractPeriaqueductal grayLocus coeruleusCochlear nucleusAnterograde labelingMajor afferentsPontine nucleus locus coeruleusSupraoculomotor nucleusCaudal raphe groupsRat ventrolateral medullaRostral ventrolateral medullaRetrograde tracers wheat germ agglutinin-conjugated horseradish peroxidaseNucleus locus coeruleusKölliker-Fuse nucleusVentral central grayMedial prefrontal cortexCollicular injectionsDiverse afferentsMinor afferentsMost laminaeCaudal injection
1988
The iontophoretic application of Fluoro-Gold for the study of afferents to deep brain nuclei
Pieribone V, Aston-Jones G. The iontophoretic application of Fluoro-Gold for the study of afferents to deep brain nuclei. Brain Research 1988, 475: 259-271. PMID: 3214735, DOI: 10.1016/0006-8993(88)90614-2.Peer-Reviewed Original ResearchAdrenergic and non-adrenergic neurons in the C1 and C3 areas project to locus coeruleus: A fluorescent double labeling study
Pieribone V, Aston-Jones G, Bohn M. Adrenergic and non-adrenergic neurons in the C1 and C3 areas project to locus coeruleus: A fluorescent double labeling study. Neuroscience Letters 1988, 85: 297-303. PMID: 3362420, DOI: 10.1016/0304-3940(88)90582-4.Peer-Reviewed Original ResearchConceptsLocus coeruleusAfferent neuronsAdrenergic neuronsFluorescent double-labeling studyRetrograde tracer Fluoro-GoldNon-adrenergic neuronsC1 adrenergic neuronsTracer Fluoro-GoldRat locus coeruleusDouble-labeling studiesPhenylethanolamine N-methyltransferaseVentrolateral medullaDorsomedial medullaFluoro-GoldIontophoretic injectionNeuronsSubsequent immunofluorescenceCoeruleusMedullaAreas project