2023
Elevated CDKN1A (P21) mediates β-thalassemia erythroid apoptosis, but its loss does not improve β-thalassemic erythropoiesis
Liang R, Lin M, Menon V, Qiu J, Menon A, Breda L, Arif T, Rivella S, Ghaffari S. Elevated CDKN1A (P21) mediates β-thalassemia erythroid apoptosis, but its loss does not improve β-thalassemic erythropoiesis. Blood Advances 2023, 7: 6873-6885. PMID: 37672319, PMCID: PMC10685172, DOI: 10.1182/bloodadvances.2022007655.Peer-Reviewed Original ResearchConceptsErythroid cell maturationErythroid cell survivalCell cycle inhibitor Cdkn1aFoxO3 target genesErythroid apoptosisFoxO3 transcription factorElevated reactive oxygen speciesΒ-globin geneCell maturationEmbryonic lethalityTranscription factorsTarget genesErythroid maturationReactive oxygen speciesMolecular networksMolecular mechanismsThalassemic erythropoiesisCell survivalProgenitor compartmentErythroid compartmentFOXO3Extramedullary erythropoiesisΒ-thalassemiaApoptosisHemoglobin production
2022
Protocol to identify and analyze mouse and human quiescent hematopoietic stem cells using flow cytometry combined with confocal imaging
Qiu J, Menon V, Tzavaras N, Liang R, Ghaffari S. Protocol to identify and analyze mouse and human quiescent hematopoietic stem cells using flow cytometry combined with confocal imaging. STAR Protocols 2022, 3: 101828. PMID: 36595934, PMCID: PMC9676629, DOI: 10.1016/j.xpro.2022.101828.Peer-Reviewed Original Research
2019
Nitric oxide-donor/PARP-inhibitor combination: A new approach for sensitization to ionizing radiation
Wilson A, Menon V, Khan Z, Alam A, Litovchick L, Yakovlev V. Nitric oxide-donor/PARP-inhibitor combination: A new approach for sensitization to ionizing radiation. Redox Biology 2019, 24: 101169. PMID: 30889466, PMCID: PMC6423503, DOI: 10.1016/j.redox.2019.101169.Peer-Reviewed Original ResearchConceptsPARP inhibitorsBRCA1/2 mutationsSingle agentTumor microenvironmentAdditional therapeutic benefitBRCA1 expressionNew drug combinationsDNA-damaging therapiesNon-toxic concentrationsTumor-targeting approachesCancer patientsOvarian cancerBreast cancerDrug combinationsTherapeutic benefitClinical developmentTumorsRadiation treatmentCancerOxidative stressSubsequent inhibitionSynthetic lethality approachSensitizationHigh potencyDNA damageDYRK1A regulates the recruitment of 53BP1 to the sites of DNA damage in part through interaction with RNF169
Menon VR, Ananthapadmanabhan V, Swanson S, Saini S, Sesay F, Yakovlev V, Florens L, DeCaprio JA, Washburn MP, Dozmorov M, Litovchick L. DYRK1A regulates the recruitment of 53BP1 to the sites of DNA damage in part through interaction with RNF169. Cell Cycle 2019, 18: 531-551. PMID: 30773093, PMCID: PMC6464593, DOI: 10.1080/15384101.2019.1577525.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Cycle CheckpointsCell Line, TumorCRISPR-Cas SystemsDNA DamageDNA RepairGamma RaysGene EditingHumansMetabolic Networks and PathwaysMicePhosphorylationProtein BindingProtein Serine-Threonine KinasesProtein-Tyrosine KinasesRNA InterferenceRNA, Small InterferingTumor Suppressor p53-Binding Protein 1Ubiquitin-Protein LigasesConceptsDSB sitesDNA repair processesHomologous recombination repairDNA double-strand break repairDouble-strand break repairDNA damageDosage-dependent genesDosage of DYRK1AImportant protein kinasesUbiquitin-binding proteinsNon-homologous endOS cellsInhibition of DYRK1ADSB recruitmentRepair processDual-specificity tyrosinePhosphorylation sitesProteomic analysisBreak repairProtein kinaseRNF169Kinase 1ARecombination repairDependent genesMouse cells