2022
A persistent behavioral state enables sustained predation of humans by mosquitoes
Sorrells T, Pandey A, Rosas-Villegas A, Vosshall L. A persistent behavioral state enables sustained predation of humans by mosquitoes. ELife 2022, 11: e76663. PMID: 35550041, PMCID: PMC9154740, DOI: 10.7554/elife.76663.Peer-Reviewed Original Research
2020
Sensory Discrimination of Blood and Floral Nectar by Aedes aegypti Mosquitoes
Jové V, Gong Z, Hol F, Zhao Z, Sorrells T, Carroll T, Prakash M, McBride C, Vosshall L. Sensory Discrimination of Blood and Floral Nectar by Aedes aegypti Mosquitoes. Neuron 2020, 108: 1163-1180.e12. PMID: 33049200, PMCID: PMC9831381, DOI: 10.1016/j.neuron.2020.09.019.Peer-Reviewed Original ResearchConceptsBlood componentsSpecific blood componentsBlood-feeding mosquitoesAdditional blood componentsAedes aegypti mosquitoesAedes aegypti femalesCalcium imagingNeuron classesBloodMeal sizeSpecialized neuronsAegypti mosquitoesMetabolic fateMillions of peopleAegypti femalesBlood mealSensory discriminationDisease transmissionFeeding programsNeuronsSensory detectionMosquitoesTaste qualityVector-borne disease transmissionMealProtein-coding changes preceded cis-regulatory gains in a newly evolved transcription circuit
Britton C, Sorrells T, Johnson A. Protein-coding changes preceded cis-regulatory gains in a newly evolved transcription circuit. Science 2020, 367: 96-100. PMID: 31896718, PMCID: PMC8284397, DOI: 10.1126/science.aax5217.Peer-Reviewed Original Research
2018
Intrinsic cooperativity potentiates parallel cis-regulatory evolution
Sorrells T, Johnson A, Howard C, Britton C, Fowler K, Feigerle J, Weil P, Johnson A. Intrinsic cooperativity potentiates parallel cis-regulatory evolution. ELife 2018, 7: e37563. PMID: 30198843, PMCID: PMC6173580, DOI: 10.7554/elife.37563.Peer-Reviewed Original ResearchConceptsRegulatory sequencesGeneral transcription factor TFIIDCis-regulatory evolutionRibosomal protein genesTranscription factor TFIIDCommon interaction partnersFungal lineagesAncestral regulatorFactor TFIIDIndependent lineagesEvolutionary eventsGenomic scaleTranscription regulatorsTranscriptional activationParallel evolutionProtein geneRegulatory proteinsSecond regulatorInteraction partnersRandom mutationsFunctional sitesIntrinsic cooperativityMcm1Rap1Regulator
2015
Intersecting transcription networks constrain gene regulatory evolution
Sorrells T, Booth L, Tuch B, Johnson A. Intersecting transcription networks constrain gene regulatory evolution. Nature 2015, 523: 361-365. PMID: 26153861, PMCID: PMC4531262, DOI: 10.1038/nature14613.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBinding SitesDNA-Binding ProteinsDNA, FungalEnhancer Elements, GeneticEpistasis, GeneticEvolution, MolecularGene Expression Regulation, FungalGene Regulatory NetworksGenes, FungalKluyveromycesMating FactorPeptidesPheromonesPromoter Regions, GeneticSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsTranscription FactorsConceptsGene regulatory evolutionGene regulatory networksRegulatory DNARegulatory evolutionTranscription networksCommon ancestorRegulatory networksEpistatic interactionsSpecific genesSingle proteinMutation effectsSecond pathwayCandida albicansSuch interactionsSpecific changesSaccharomycesAncestorGenesEvolutionRegulatorProteinDNAMutationsPathwayInteractionMaking Sense of Transcription Networks
Sorrells T, Johnson A. Making Sense of Transcription Networks. Cell 2015, 161: 714-723. PMID: 25957680, PMCID: PMC4531093, DOI: 10.1016/j.cell.2015.04.014.Peer-Reviewed Original Research
2013
Identification and characterization of a previously undescribed family of sequence-specific DNA-binding domains
Lohse M, Hernday A, Fordyce P, Noiman L, Sorrells T, Hanson-Smith V, Nobile C, DeRisi J, Johnson A. Identification and characterization of a previously undescribed family of sequence-specific DNA-binding domains. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 7660-7665. PMID: 23610392, PMCID: PMC3651432, DOI: 10.1073/pnas.1221734110.Peer-Reviewed Original ResearchMeSH KeywordsCandida albicansChromatin ImmunoprecipitationComputational BiologyDNADNA-Binding ProteinsFungal ProteinsGene DeletionGene Expression ProfilingGene Expression Regulation, FungalGreen Fluorescent ProteinsMultigene FamilyProtein BindingProtein Interaction Domains and MotifsTranscription, GeneticConceptsSequence-specific DNA-binding proteinsDNA-binding domainWhite-opaque switchingDNA-binding proteinsTranscriptional regulatorsOpaque cellsGenome-wide chromatin immunoprecipitationHuman fungal pathogen Candida albicansSequence-specific DNA-binding domainFungal pathogen Candida albicansHeritable cell typesCis-regulatory sequencesGene regulatory proteinsRNA-binding proteinFraction of genesMajor fungal pathogenPathogen Candida albicansDeletion mutant strainAspects of biologySequence-specific mannerGene expression profilingDeep conservationCurrent annotationEvolutionary timeSmall clade
2012
Protein Modularity, Cooperative Binding, and Hybrid Regulatory States Underlie Transcriptional Network Diversification
Baker C, Booth L, Sorrells T, Johnson A. Protein Modularity, Cooperative Binding, and Hybrid Regulatory States Underlie Transcriptional Network Diversification. Cell 2012, 151: 80-95. PMID: 23021217, PMCID: PMC3519278, DOI: 10.1016/j.cell.2012.08.018.Peer-Reviewed Original ResearchConceptsProtein modularityAncestral modeConserved expression patternCis-regulatory sequencesNovel regulatory modeProtein-DNA interactionsRegulatory network structureMode of regulationTranscription regulationAncestral networksGene regulationModern speciesDifferent lineagesYeast speciesExpression patternsRegulatory stateRegulatory modeCooperative bindingType cellsRegulationSpeciesLineagesGenesDiversityDiversificationA Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans
Nobile C, Fox E, Nett J, Sorrells T, Mitrovich Q, Hernday A, Tuch B, Andes D, Johnson A. A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans. Cell 2012, 148: 126-138. PMID: 22265407, PMCID: PMC3266547, DOI: 10.1016/j.cell.2011.10.048.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiofilmsCandida albicansCandidiasis, OralCandidiasis, VulvovaginalCatheter-Related InfectionsDisease Models, AnimalEvolution, MolecularFemaleGene Expression ProfilingGene Expression Regulation, FungalGene Regulatory NetworksGenes, FungalMaleMicroscopy, ConfocalRatsRats, Sprague-DawleyStomatitis, DentureConceptsBiofilm formationPathogenic yeast Candida albicansGenome-wide approachesComplex cell behaviorsAncient genesYeast Candida albicansGenetic screenTranscriptional networksEvolutionary analysisTranscription regulatorsTranscription circuitsMammalian hostsTarget genesBiofilm networksBiofilm developmentCandida albicansGenesCell behaviorIndividual cellsSuspension culturesMedical device-associated infectionsDrug resistanceBiofilmsMicrobesRegulator
2011
Chemical Defense by the Native Winter Ant (Prenolepis imparis) against the Invasive Argentine Ant (Linepithema humile)
Sorrells T, Kuritzky L, Kauhanen P, Fitzgerald K, Sturgis S, Chen J, Dijamco C, Basurto K, Gordon D. Chemical Defense by the Native Winter Ant (Prenolepis imparis) against the Invasive Argentine Ant (Linepithema humile). PLOS ONE 2011, 6: e18717. PMID: 21526231, PMCID: PMC3079705, DOI: 10.1371/journal.pone.0018717.Peer-Reviewed Original Research