2020
Protein-coding changes preceded cis-regulatory gains in a newly evolved transcription circuit
Britton C, Sorrells T, Johnson A. Protein-coding changes preceded cis-regulatory gains in a newly evolved transcription circuit. Science 2020, 367: 96-100. PMID: 31896718, PMCID: PMC8284397, DOI: 10.1126/science.aax5217.Peer-Reviewed Original Research
2015
Intersecting transcription networks constrain gene regulatory evolution
Sorrells T, Booth L, Tuch B, Johnson A. Intersecting transcription networks constrain gene regulatory evolution. Nature 2015, 523: 361-365. PMID: 26153861, PMCID: PMC4531262, DOI: 10.1038/nature14613.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBinding SitesDNA-Binding ProteinsDNA, FungalEnhancer Elements, GeneticEpistasis, GeneticEvolution, MolecularGene Expression Regulation, FungalGene Regulatory NetworksGenes, FungalKluyveromycesMating FactorPeptidesPheromonesPromoter Regions, GeneticSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsTranscription FactorsConceptsGene regulatory evolutionGene regulatory networksRegulatory DNARegulatory evolutionTranscription networksCommon ancestorRegulatory networksEpistatic interactionsSpecific genesSingle proteinMutation effectsSecond pathwayCandida albicansSuch interactionsSpecific changesSaccharomycesAncestorGenesEvolutionRegulatorProteinDNAMutationsPathwayInteractionMaking Sense of Transcription Networks
Sorrells T, Johnson A. Making Sense of Transcription Networks. Cell 2015, 161: 714-723. PMID: 25957680, PMCID: PMC4531093, DOI: 10.1016/j.cell.2015.04.014.Peer-Reviewed Original Research
2012
Protein Modularity, Cooperative Binding, and Hybrid Regulatory States Underlie Transcriptional Network Diversification
Baker C, Booth L, Sorrells T, Johnson A. Protein Modularity, Cooperative Binding, and Hybrid Regulatory States Underlie Transcriptional Network Diversification. Cell 2012, 151: 80-95. PMID: 23021217, PMCID: PMC3519278, DOI: 10.1016/j.cell.2012.08.018.Peer-Reviewed Original ResearchConceptsProtein modularityAncestral modeConserved expression patternCis-regulatory sequencesNovel regulatory modeProtein-DNA interactionsRegulatory network structureMode of regulationTranscription regulationAncestral networksGene regulationModern speciesDifferent lineagesYeast speciesExpression patternsRegulatory stateRegulatory modeCooperative bindingType cellsRegulationSpeciesLineagesGenesDiversityDiversificationA Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans
Nobile C, Fox E, Nett J, Sorrells T, Mitrovich Q, Hernday A, Tuch B, Andes D, Johnson A. A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans. Cell 2012, 148: 126-138. PMID: 22265407, PMCID: PMC3266547, DOI: 10.1016/j.cell.2011.10.048.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiofilmsCandida albicansCandidiasis, OralCandidiasis, VulvovaginalCatheter-Related InfectionsDisease Models, AnimalEvolution, MolecularFemaleGene Expression ProfilingGene Expression Regulation, FungalGene Regulatory NetworksGenes, FungalMaleMicroscopy, ConfocalRatsRats, Sprague-DawleyStomatitis, DentureConceptsBiofilm formationPathogenic yeast Candida albicansGenome-wide approachesComplex cell behaviorsAncient genesYeast Candida albicansGenetic screenTranscriptional networksEvolutionary analysisTranscription regulatorsTranscription circuitsMammalian hostsTarget genesBiofilm networksBiofilm developmentCandida albicansGenesCell behaviorIndividual cellsSuspension culturesMedical device-associated infectionsDrug resistanceBiofilmsMicrobesRegulator