2021
Protective impacts of household-based tuberculosis contact tracing are robust across endemic incidence levels and community contact patterns
Havumaki J, Cohen T, Zhai C, Miller JC, Guikema SD, Eisenberg MC, Zelner J. Protective impacts of household-based tuberculosis contact tracing are robust across endemic incidence levels and community contact patterns. PLOS Computational Biology 2021, 17: e1008713. PMID: 33556077, PMCID: PMC7895355, DOI: 10.1371/journal.pcbi.1008713.Peer-Reviewed Original ResearchConceptsTuberculosis burdenCommunity transmissionGlobal tuberculosis control targetsSustained community transmissionHigh-incidence settingsHigh disease burdenTuberculosis contact tracingLow tuberculosis burdenHousehold contactsHousehold transmissionDisease burdenVaried incidenceContact patternsIncidence levelsProtective impactEpidemiological settingsInfected individualsNew casesProtective benefitsContact tracingCommunity contactsSuch interventionsInterventionBurdenProactive case
2020
Cost-effectiveness of post-treatment follow-up examinations and secondary prevention of tuberculosis in a high-incidence setting: a model-based analysis
Marx FM, Cohen T, Menzies NA, Salomon JA, Theron G, Yaesoubi R. Cost-effectiveness of post-treatment follow-up examinations and secondary prevention of tuberculosis in a high-incidence setting: a model-based analysis. The Lancet Global Health 2020, 8: e1223-e1233. PMID: 32827484, PMCID: PMC7549318, DOI: 10.1016/s2214-109x(20)30227-8.Peer-Reviewed Original ResearchConceptsIsoniazid preventive therapySecondary preventive therapyHigh-incidence settingsPost-treatment followPreventive therapyTuberculosis controlTuberculosis incidenceTreatment completionTuberculosis case findingOverall disease burdenHigh tuberculosis incidenceTuberculosis-endemic settingHigh-incidence communityFirst yearHealth system costsRecurrent tuberculosisSecondary preventionAnnual followTuberculosis treatmentDisease burdenHigh riskCase findingSingle followSuburban Cape TownPreventive interventions
2018
Spatially targeted screening to reduce tuberculosis transmission in high-incidence settings
Cudahy PGT, Andrews JR, Bilinski A, Dowdy DW, Mathema B, Menzies NA, Salomon JA, Shrestha S, Cohen T. Spatially targeted screening to reduce tuberculosis transmission in high-incidence settings. The Lancet Infectious Diseases 2018, 19: e89-e95. PMID: 30554997, PMCID: PMC6401264, DOI: 10.1016/s1473-3099(18)30443-2.Peer-Reviewed Original ResearchConceptsTuberculosis incidenceLow tuberculosis incidence settingsActive case-finding strategyHigh tuberculosis (TB) incidence countriesCase-finding strategyTuberculosis control strategiesHigh-incidence settingsInfectious causesIncidence settingsIncidence countriesTuberculosis transmissionTreatment outcomesActive screeningOnward transmissionSystematic reviewInfectious individualsInfectious periodTuberculosisIncidenceDeathCauseProximal causeHIVMixed resultsMortalityTuberculosis control interventions targeted to previously treated people in a high-incidence setting: a modelling study
Marx FM, Yaesoubi R, Menzies NA, Salomon JA, Bilinski A, Beyers N, Cohen T. Tuberculosis control interventions targeted to previously treated people in a high-incidence setting: a modelling study. The Lancet Global Health 2018, 6: e426-e435. PMID: 29472018, PMCID: PMC5849574, DOI: 10.1016/s2214-109x(18)30022-6.Peer-Reviewed Original ResearchConceptsHigh-incidence settingsIsoniazid preventive therapyPreventive therapyTuberculosis treatmentActive casesHIV prevalenceTuberculosis controlControl interventionsIncident tuberculosis casesPrevious tuberculosis treatmentTuberculosis control interventionsTB case notificationHigh-risk groupTransmission dynamic modelTuberculosis deathsHigh tuberculosisRecurrent diseasePrevalent tuberculosisTuberculosis casesTuberculosis incidenceCase notificationTreatment outcomesTuberculosis morbidityTuberculosis epidemicAdditional interventions
2013
Evaluation of the Tuberculosis Strain Typing Service (TB-STS) in England
Mears J, Vynnycky E, Lord J, Borgdorff M, Cohen T, Abubakar I, Sonnenberg P, group O. Evaluation of the Tuberculosis Strain Typing Service (TB-STS) in England. The Lancet 2013, 382: s73. DOI: 10.1016/s0140-6736(13)62498-8.Peer-Reviewed Original ResearchTuberculosis incidenceProportion of infectionsDiagnostic delayBase-case assumptionsLatent infectionPulmonary tuberculosis casesTuberculosis control effortsHigh-incidence settingsMycobacterium tuberculosis isolatesCluster investigationsTuberculosis notification ratesPost-implementation dataComplex public health interventionsPopulation-level interventionsPublic health interventionsMIRU-VNTR typingTuberculosis infectionTuberculosis casesPreventive treatmentPublic health outcomesNotification ratesTuberculosis isolatesSenior Research FellowshipDeterministic compartmental modelProportion of individuals
2011
Epidemiologic Inference From the Distribution of Tuberculosis Cases in Households in Lima, Peru
Brooks-Pollock E, Becerra MC, Goldstein E, Cohen T, Murray MB. Epidemiologic Inference From the Distribution of Tuberculosis Cases in Households in Lima, Peru. The Journal Of Infectious Diseases 2011, 203: 1582-1589. PMID: 21592987, PMCID: PMC3096792, DOI: 10.1093/infdis/jir162.Peer-Reviewed Original ResearchConceptsHousehold contactsCommunity transmissionHousehold casesPrevious TB infectionNew TB casesHigh-incidence settingsHousehold risk factorsClustering of casesDistribution of casesMajority of casesRisk of diseaseTB infectionActive tuberculosisTB casesCase patientsProtective immunityTuberculosis casesHousehold transmissionRisk factorsNumber of casesHousehold exposureNatural historyTuberculosisCross-sectional dataImmunity