2011
Ghrelin-induced hypothermia: A physiological basis but no clinical risk
Wiedmer P, Strasser F, Horvath TL, Blum D, DiMarchi R, Lutz T, Schürmann A, Joost HG, Tschöp MH, Tong J. Ghrelin-induced hypothermia: A physiological basis but no clinical risk. Physiology & Behavior 2011, 105: 43-51. PMID: 21513721, PMCID: PMC3146973, DOI: 10.1016/j.physbeh.2011.03.027.Peer-Reviewed Original ResearchConceptsGhrelin treatmentBody temperatureApplication of ghrelinMedial preoptic areaPotential anatomical basisCold-sensitive neuronsGhrelin infusionBody core temperatureChronic i.Positive energy balanceGhrelin receptorPreoptic areaAxon terminalsClinical riskFood intakeGhrelinHealthy humansSerious hypothermiaMale subjectsPhysiologic circumstancesAnatomical basisHypothermiaCold exposureRelevant decreaseEnergy expenditure
2003
Fasting Activates the Nonhuman Primate Hypocretin (Orexin) System and Its Postsynaptic Targets
Diano S, Horvath B, Urbanski HF, Sotonyi P, Horvath TL. Fasting Activates the Nonhuman Primate Hypocretin (Orexin) System and Its Postsynaptic Targets. Endocrinology 2003, 144: 3774-3778. PMID: 12933647, DOI: 10.1210/en.2003-0274.Peer-Reviewed Original ResearchConceptsPerifornical regionArcuate nucleusHypothalamic regulationC-Fos-expressing cellsLateral hypothalamic cellsC-fosMedial preoptic areaVariety of endocrineC-fos expressionDiverse brain regionsHCRT axonsLeptin levelsNuclear c-FosDorsomedial hypothalamusAsymmetric synapsesBasal forebrainPresent studyPostsynaptic targetsDorsomedial nucleusNeuropeptide Y.Preoptic areaThalamic nucleiHcrt neuronsHcrt systemAxon terminals
2001
Brain androgen and progesterone metabolizing enzymes: biosynthesis, distribution and function
Lephart E, Lund T, Horvath T. Brain androgen and progesterone metabolizing enzymes: biosynthesis, distribution and function. Brain Research Reviews 2001, 37: 25-37. PMID: 11744072, DOI: 10.1016/s0165-0173(01)00111-4.Peer-Reviewed Original ResearchConceptsDimorphic brain structuresAnteroventral periventricular nucleusBrain structuresEffects of phytoestrogensLow phytoestrogen dietPeripheral tissue sitesBrain aromatase cytochrome P450Brain androgenPhytoestrogen dietFemale ratsPeriventricular nucleusPreoptic areaCalcium-binding proteinsAromatase cytochrome P450Dimorphic nucleusTissue sitesCalbindinSteroid productsPotential roleSpatial memoryVisual-spatial memoryP450aroCytochrome P450Recent reportsPhytoestrogens
1998
Leptin receptors in estrogen receptor-containing neurons of the female rat hypothalamus
Diano S, Kalra S, Sakamoto H, Horvath T. Leptin receptors in estrogen receptor-containing neurons of the female rat hypothalamus. Brain Research 1998, 812: 256-259. PMID: 9813356, DOI: 10.1016/s0006-8993(98)00936-6.Peer-Reviewed Original ResearchConceptsLeptin receptorEstrogen receptorNeuronal perikaryaPeripheral signalsEstrogen receptor-containing neuronsParvicellular paraventricular nucleusReceptor-containing neuronsMedial preoptic areaVentromedial hypothalamic nucleusFemale rat hypothalamusArcuate nucleusHypothalamic nucleiFemale ratsParaventricular nucleusPreoptic areaGonadal functionHypothalamic sectionsPeriventricular regionRat hypothalamusNeuroendocrine mechanismsReceptorsExtensive colocalizationLeptinHypothalamusPerikaryaAn Alternate Pathway for Visual Signal Integration into the Hypothalamo-Pituitary Axis: Retinorecipient Intergeniculate Neurons Project to Various Regions of the Hypothalamus and Innervate Neuroendocrine Cells Including Those Producing Dopamine
Horvath TL. An Alternate Pathway for Visual Signal Integration into the Hypothalamo-Pituitary Axis: Retinorecipient Intergeniculate Neurons Project to Various Regions of the Hypothalamus and Innervate Neuroendocrine Cells Including Those Producing Dopamine. Journal Of Neuroscience 1998, 18: 1546-1558. PMID: 9454860, PMCID: PMC6792709, DOI: 10.1523/jneurosci.18-04-01546.1998.Peer-Reviewed Original ResearchConceptsHypothalamo-pituitary axisIntergeniculate leafletNeuroendocrine cellsSuprachiasmatic nucleusHypothalamic dopamine neuronsMedial preoptic areaFenestrated capillariesPopulations of neuronsNeurons projectBilateral enucleationHypothalamic projectionsDistal dendritesRetrograde tracerVentromedial nucleusDopamine neuronsIntraperitoneal injectionProjection sitesPeriventricular nucleusPreoptic areaRetinal fibersTract tracingHypothalamic cellsRetinal axonsSynaptic targetsEfferents
1997
Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin‐releasing hormone system: Combined tracing and light and electron microscopic immunocytochemical studies
Van Der Beek E, Horvath T, Wiegant V, Van Den Hurk R, Buijs R. Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin‐releasing hormone system: Combined tracing and light and electron microscopic immunocytochemical studies. The Journal Of Comparative Neurology 1997, 384: 569-579. PMID: 9259490, DOI: 10.1002/(sici)1096-9861(19970811)384:4<569::aid-cne6>3.0.co;2-0.Peer-Reviewed Original ResearchConceptsSuprachiasmatic nucleusFemale ratsGnRH systemGnRH-immunoreactive cell bodiesGonadotropin-releasing hormone (GnRH) neuronsDaily LH surgesImplantation of estrogenOvariectomized rats resultsRostral ventrolateral portionGonadotropin-releasing hormone (GnRH) systemVasoactive intestinal polypeptideElectron microscopic immunocytochemical studyHormone neuronsGnRH neuronsIntestinal polypeptideLH surgeMonosynaptic pathwayPutative transmittersAnterograde tracerPreoptic areaNeuronal pathwaysRats resultsVentrolateral portionBilateral projectionsFemale rodentsEvidence Showing That β-Endorphin Regulates Cyclic Guanosine 3′,5′-Monophosphate (cGMP) Efflux: Anatomical and Functional Support for an Interaction between Opiates and Nitric Oxide
Pu S, Horvath TL, Diano S, Naftolin F, Kalra PS, Kalra SP. Evidence Showing That β-Endorphin Regulates Cyclic Guanosine 3′,5′-Monophosphate (cGMP) Efflux: Anatomical and Functional Support for an Interaction between Opiates and Nitric Oxide. Endocrinology 1997, 138: 1537-1543. PMID: 9075713, DOI: 10.1210/endo.138.4.5086.Peer-Reviewed Original ResearchConceptsExcitatory amino acidsMedial preoptic areaCGMP/Opioid influenceGnRH secretionNitric oxidePreoptic areaN-methyl-D-aspartate receptorsMu-opiate receptor agonistNOS-immunopositive cellsNOS-immunoreactive neuronsPituitary LH secretionOpiate receptor agonistsOpiate receptor antagonistRelease of GnRHCentral nervous systemDirect inhibitory controlExcitatory NMDATonic restraintLH secretionEndogenous opioidsNOS pathwayReceptor antagonistBeta-endorphinGonadal steroidsAromatase in axonal processes of early postnatal hypothalamic and limbic areas including the cingulate cortex
Horvath T, Roa-Pena L, Jakab R, Simpson E, Naftolin F. Aromatase in axonal processes of early postnatal hypothalamic and limbic areas including the cingulate cortex. The Journal Of Steroid Biochemistry And Molecular Biology 1997, 61: 349-357. PMID: 9365210, DOI: 10.1016/s0960-0760(97)80032-5.Peer-Reviewed Original ResearchConceptsAxonal processesLimbic areasStria terminalisCritical perinatal periodMedial preoptic areaPostnatal day 5Limbic cortexArcuate nucleusHypothalamic areaNeuronal perikaryaLimbic structuresMedial septumPerinatal periodPreoptic areaDiagonal bandMedial nucleusAxon terminalsImmunoreactive elementsPerikaryal labelingPeriventricular regionLateral septumBed nucleusParacrine actionRat brainLateral habenulaSuprachiasmatic efferents avoid phenestrated capillaries but innervate neuroendocrine cells, including those producing dopamine.
Horvath T. Suprachiasmatic efferents avoid phenestrated capillaries but innervate neuroendocrine cells, including those producing dopamine. Endocrinology 1997, 138: 1312-20. PMID: 9048641, DOI: 10.1210/endo.138.3.4976.Peer-Reviewed Original ResearchConceptsPituitary hormone secretionVasculosum laminae terminalisSuprachiasmatic nucleusHormone secretionNeuroendocrine cellsPreoptic areaLamina terminalisDopamine cellsMedian eminenceAnterior pituitary hormone secretionMedial preoptic areaDiffuse cytoplasmic labelingPhaseolus vulgaris leukoagglutininFluorogold labelingPeriventricular areaArcuate nucleusHypothalamic sitesIP administrationVentromedial nucleusAnterior hypothalamusAnterograde tracerAxon terminalsPeriventricular regionElectron microscopic examinationTyrosine hydroxylase
1996
Morphological and pharmacological evidence for neuropeptide Y-galanin interaction in the rat hypothalamus
Horvath TL, Naftolin F, Leranth C, Sahu A, Kalra SP. Morphological and pharmacological evidence for neuropeptide Y-galanin interaction in the rat hypothalamus. Endocrinology 1996, 137: 3069-3077. PMID: 8770933, DOI: 10.1210/endo.137.7.8770933.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsArcuate Nucleus of HypothalamusAxonsCerebral VentriclesColchicineDendritesEstradiolEstrusFemaleGalaninHypothalamusHypothalamus, AnteriorImmunoenzyme TechniquesImmunohistochemistryLuteinizing HormoneMicroscopy, ImmunoelectronNeuronsNeuropeptide YOvariectomyParaventricular Hypothalamic NucleusPreoptic AreaProgesteroneRatsRats, Sprague-DawleySignal TransductionSubstance PSupraoptic NucleusConceptsNeuropeptide YMedial preoptic areaLH releaseGAL neuronsArcuate nucleusIntraventricular injectionParaventricular nucleusPreoptic areaSupraoptic nucleusSynaptic connectionsBasal LH releaseNPY-immunoreactive axonsPituitary hormone secretionPituitary gonadotropin releaseRelease of gonadotropinsMicroscopic examinationHypothalamic peptidergic systemsPeroxidase-antiperoxidase techniqueAvidin-biotin peroxidaseLight microscopic examinationMechanism of actionDiaminobenzidine reactionGAL releaseNPY inputNPY administration
1993
Luteinizing Hormone‐Releasing Hormone and Gamma‐Aminobutyric Acid Neurons in the Medial Preoptic Area are Synaptic Targets of Dopamine Axons Originating in Anterior Periventricular Areas
Horvath T, Naftolin F, Leranth C. Luteinizing Hormone‐Releasing Hormone and Gamma‐Aminobutyric Acid Neurons in the Medial Preoptic Area are Synaptic Targets of Dopamine Axons Originating in Anterior Periventricular Areas. Journal Of Neuroendocrinology 1993, 5: 71-79. PMID: 8097941, DOI: 10.1111/j.1365-2826.1993.tb00365.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCerebral VentriclesColchicineDopamineFemaleGamma-Aminobutyric AcidGlutamate DecarboxylaseGonadotropin-Releasing HormoneImmunohistochemistryMicroscopy, ElectronNeuronsOxidopaminePhytohemagglutininsPreoptic AreaRatsRats, Sprague-DawleySynapsesTissue FixationTyrosine 3-MonooxygenaseConceptsHormone-releasing hormoneMedial preoptic areaGlutamic acid decarboxylasePhaseolus vulgaris leucoagglutininZona incertaPreoptic areaTyrosine hydroxylaseGlutamic acid decarboxylase-immunoreactive neuronsDopamine axonsTyrosine hydroxylase-immunoreactive boutonsAcid decarboxylaseGamma-aminobutyric acid (GABA) neuronsRat medial preoptic areaAnterior periventricular areaDesipramine-pretreated ratsDopamine axon terminalsAnteroventral periventricular nucleusCell of originEarly morphological signsDopaminergic connectionsGABA neuronsGABA cellsPeriventricular areaAcute degenerationSynaptic contacts
1992
GABAergic and catecholaminergic innervation of mediobasal hypothalamic β-endorphin cells projecting to the medial preoptic area
Horvath TL, Naftolin F, Leranth C. GABAergic and catecholaminergic innervation of mediobasal hypothalamic β-endorphin cells projecting to the medial preoptic area. Neuroscience 1992, 51: 391-399. PMID: 1281529, DOI: 10.1016/0306-4522(92)90323-t.Peer-Reviewed Original ResearchConceptsMedial preoptic areaPreoptic areaHormone-producing cellsArcuate nucleusHypothalamic beta-endorphin neuronsHormone-releasing hormone (LHRH) neuronsBeta-endorphin neuronsDirect estrogen actionHormone-containing neuronsVentromedial arcuate nucleusRetrograde tracer horseradish peroxidasePro-opiomelanocortin (POMC) neuronsCellular estrogen receptorsPro-opiomelanocortin cellsTracer horseradish peroxidaseΒ-endorphin cellsHormone neuronsImmunoreactive neuronsCatecholaminergic innervationCatecholaminergic neuronsRetrograde tracingSynaptic contactsEstrogen actionCatecholamine fibersAxon terminals