2024
Disordered but effective: short linear motifs as gene therapy targets for hyperexcitability disorders
Dib-Hajj S, Waxman S. Disordered but effective: short linear motifs as gene therapy targets for hyperexcitability disorders. Journal Of Clinical Investigation 2024, 134: e182198. PMID: 38949022, PMCID: PMC11213459, DOI: 10.1172/jci182198.Peer-Reviewed Original ResearchConceptsTetrodotoxin-sensitiveHyperexcitability disordersSensory neuronsExcitability of sensory neuronsGene therapy modalitiesPeripheral sensory neuronsVoltage-gated sodiumMinimal side effectsGene therapyInduce analgesiaTherapy modalitiesSide effectsTherapeutic strategiesNav channelsAttenuating excitationIn vivoHyperexcitabilityAnalgesiaNeuronsDisordersPainTherapyGenesBiodistributionRatsCompartment-specific regulation of NaV1.7 in sensory neurons after acute exposure to TNF-α
Tyagi S, Higerd-Rusli G, Ghovanloo M, Dib-Hajj F, Zhao P, Liu S, Kim D, Shim J, Park K, Waxman S, Choi J, Dib-Hajj S. Compartment-specific regulation of NaV1.7 in sensory neurons after acute exposure to TNF-α. Cell Reports 2024, 43: 113685. PMID: 38261513, PMCID: PMC10947185, DOI: 10.1016/j.celrep.2024.113685.Peer-Reviewed Original ResearchTNF-aSensory neuronsEffect of TNF-aSensory neuron excitabilityTumor necrosis factor-aRegulation of NaV1.7Voltage-gated sodiumPro-inflammatory cytokinesCompartment-specific effectsNeuronal plasma membraneSensitize nociceptorsNeuronal excitabilitySomatic membraneChannel N terminusElectrophysiological recordingsP38 MAPKIon channelsFactor AAcute exposureMolecular determinantsNeuronsAxonal endingsPhospho-acceptor sitesPlasma membraneCompartment-specific regulation
2023
Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes
Ghovanloo M, Tyagi S, Zhao P, Effraim P, Dib-Hajj S, Waxman S. Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes. Channels 2023, 18: 2289256. PMID: 38055732, PMCID: PMC10761158, DOI: 10.1080/19336950.2023.2289256.Peer-Reviewed Original ResearchConceptsSexual dimorphismRodent dorsal root ganglion neuronsBiophysical propertiesDorsal root ganglion neuronsExpression patternsSex-dependent regulationVoltage-gated sodiumFunctional analysisGanglion neuronsRodent sensory neuronsMouse dorsal root ganglion neuronsNaïve WT miceNumber of cellsMixed populationDimorphismUniform experimental conditionsSex-dependent differencesSensory neuronsNative DRG neuronsPain pathwaysDRG neuronsWT miceClinical studiesNav currentsAdult malesPain-causing stinging nettle toxins target TMEM233 to modulate NaV1.7 function
Jami S, Deuis J, Klasfauseweh T, Cheng X, Kurdyukov S, Chung F, Okorokov A, Li S, Zhang J, Cristofori-Armstrong B, Israel M, Ju R, Robinson S, Zhao P, Ragnarsson L, Andersson Å, Tran P, Schendel V, McMahon K, Tran H, Chin Y, Zhu Y, Liu J, Crawford T, Purushothamvasan S, Habib A, Andersson D, Rash L, Wood J, Zhao J, Stehbens S, Mobli M, Leffler A, Jiang D, Cox J, Waxman S, Dib-Hajj S, Neely G, Durek T, Vetter I. Pain-causing stinging nettle toxins target TMEM233 to modulate NaV1.7 function. Nature Communications 2023, 14: 2442. PMID: 37117223, PMCID: PMC10147923, DOI: 10.1038/s41467-023-37963-2.Peer-Reviewed Original ResearchConceptsSensory neuronsVoltage-sensing domainNav channelsTransmembrane proteinAccessory proteinsVoltage-gated sodium channelsCritical regulatorPore domainChannel gatingExtracellular loopToxin-mediated effectsNeuronal excitabilityPeptide toxinsProteinSodium channelsPharmacological activitiesNav1.7 functionKnottin peptidesNeuronsImportant insightsToxinSubunitsRegulatorDomainExcelsaPaclitaxel effects on axonal localization and vesicular trafficking of NaV1.8
Baker C, Tyagi S, Higerd-Rusli G, Liu S, Zhao P, Dib-Hajj F, Waxman S, Dib-Hajj S. Paclitaxel effects on axonal localization and vesicular trafficking of NaV1.8. Frontiers In Molecular Neuroscience 2023, 16: 1130123. PMID: 36860665, PMCID: PMC9970094, DOI: 10.3389/fnmol.2023.1130123.Peer-Reviewed Original ResearchChemotherapy-induced peripheral neuropathyDorsal root gangliaPTX treatmentDRG axonsEffect of paclitaxelVoltage-gated sodium channel NaPain syndromePeripheral neuropathyDRG neuronsSodium channel NaRoot gangliaCell cycle arrestNeuronal somataSensory neuronsSide effectsTherapeutic targetingTumor growthPaclitaxel effectAntineoplastic agentsAxonal localizationPaclitaxelNumber of NaAxonal compartmentAxonsChannel Na
2020
Two independent mouse lines carrying the Nav1.7 I228M gain-of-function variant display dorsal root ganglion neuron hyperexcitability but a minimal pain phenotype
Chen L, Wimalasena NK, Shim J, Han C, Lee SI, Gonzalez-Cano R, Estacion M, Faber CG, Lauria G, Dib-Hajj S, Woolf CJ, Waxman SG. Two independent mouse lines carrying the Nav1.7 I228M gain-of-function variant display dorsal root ganglion neuron hyperexcitability but a minimal pain phenotype. Pain 2020, 162: 1758-1770. PMID: 33323889, PMCID: PMC8119301, DOI: 10.1097/j.pain.0000000000002171.Peer-Reviewed Original ResearchConceptsSmall fiber neuropathyDorsal root ganglion neuron hyperexcitabilityNeuron hyperexcitabilityMouse linesIdiopathic small fiber neuropathyIntraepidermal nerve fiber lossPainful small fiber neuropathyFunction variantsDRG neuron hyperexcitabilityNerve fiber lossSodium channel Nav1.7Multielectrode array recordingsNeuropathic painThermal hyperalgesiaDRG neuronsFiber lossPain disordersSensory dysfunctionNeuropathy phenotypePain phenotypesM miceSensory neuronsHyperexcitabilityChannel Nav1.7Independent mouse lines
2019
NaV1.6 regulates excitability of mechanosensitive sensory neurons
Israel MR, Tanaka BS, Castro J, Thongyoo P, Robinson SD, Zhao P, Deuis JR, Craik DJ, Durek T, Brierley SM, Waxman SG, Dib‐Hajj S, Vetter I. NaV1.6 regulates excitability of mechanosensitive sensory neurons. The Journal Of Physiology 2019, 597: 3751-3768. PMID: 31087362, DOI: 10.1113/jp278148.Peer-Reviewed Original ResearchConceptsPeripheral sensory neuronsPeripheral nervous systemDorsal root ganglion neuronsSensory neuronsVoltage-gated sodium channelsGanglion neuronsSodium channelsLarge-diameter dorsal root ganglion neuronsTonic action potential firingWhole-cell patch-clamp recordingsMultiple voltage-gated sodium channelsIntra-plantar injectionMechanosensitive sensory neuronsVivo behavioral assessmentsAction potential firingChannel activationPatch-clamp recordingsPotential therapeutic targetMechanical stimuliΒ-scorpion toxinSodium channel isoformsPain pathwaysThermal allodyniaPain generationSensory afferents
2017
Reverse pharmacogenomics: carbamazepine normalizes activation and attenuates thermal hyperexcitability of sensory neurons due to Nav1.7 mutation I234T
Yang Y, Adi T, Effraim PR, Chen L, Dib‐Hajj S, Waxman SG. Reverse pharmacogenomics: carbamazepine normalizes activation and attenuates thermal hyperexcitability of sensory neurons due to Nav1.7 mutation I234T. British Journal Of Pharmacology 2017, 175: 2261-2271. PMID: 28658526, PMCID: PMC5980548, DOI: 10.1111/bph.13935.Peer-Reviewed Original ResearchConceptsUse-dependent inhibitionSensory neuronsDorsal root ganglion sensory neuronsIntact sensory neuronsDRG sensory neuronsMulti-electrode array recordingsTreatment of painTargeting Ion ChannelsEffects of carbamazepineMutant channelsT mutationChronic painActivation of NaSodium channel variantsSection visitPainPharmacogenomic approachPharmacological analysisPatch clampPatientsNeuronsHigher firingCarbamazepineThemed sectionChannel variants
2012
Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system
Shields SD, Ahn H, Yang Y, Han C, Seal RP, Wood JN, Waxman SG, Dib-Hajj S. Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain 2012, 153: 2017-2030. PMID: 22703890, DOI: 10.1016/j.pain.2012.04.022.Peer-Reviewed Original ResearchConceptsPeripheral nervous systemSensory neuronsKnockout mouse phenotypesNervous systemDorsal root ganglion neuronsUnmyelinated sensory afferentsPrimary sensory neuronsLow-threshold mechanoreceptorsMouse peripheral nervous systemGene functionVoltage-gated sodium channelsConditional knockout miceCytoskeletal proteinsIdentity of neuronsNav1.8 expressionMolecular markersDRG neuronsVast diversitySensory afferentsCre miceGanglion neuronsMouse phenotypeNoxious stimuliAβ fibersKnockout mice
2009
A sodium channel gene SCN9A polymorphism that increases nociceptor excitability
Estacion M, Harty TP, Choi J, Tyrrell L, Dib‐Hajj S, Waxman SG. A sodium channel gene SCN9A polymorphism that increases nociceptor excitability. Annals Of Neurology 2009, 66: 862-866. PMID: 20033988, DOI: 10.1002/ana.21895.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArginineBiophysical PhenomenaCell Line, TransformedElectric StimulationGanglia, SpinalGreen Fluorescent ProteinsHumansMembrane PotentialsMiceNAV1.7 Voltage-Gated Sodium ChannelNociceptorsPatch-Clamp TechniquesPolymorphism, Single NucleotideSensory Receptor CellsSensory ThresholdsSodium ChannelsTransfectionTryptophanConceptsNonsynonymous single nucleotide polymorphismsNociceptive primary sensory neuronsDorsal root ganglion neuronsPrimary sensory neuronsCurrent-clamp analysisSingle nucleotide polymorphismsSCN9A geneDRG neuronsNociceptor excitabilityGanglion neuronsUnaffected family membersControl chromosomesSensory neuronsSmall depolarizationSodium channelsMembrane potentialNeuronsAffected probandPolymorphismFamily membersDepolarizationChromosomesGenesErythromelalgiaPain
2007
A Nav1.7 channel mutation associated with hereditary erythromelalgia contributes to neuronal hyperexcitability and displays reduced lidocaine sensitivity
Sheets PL, Jackson JO, Waxman SG, Dib‐Hajj S, Cummins TR. A Nav1.7 channel mutation associated with hereditary erythromelalgia contributes to neuronal hyperexcitability and displays reduced lidocaine sensitivity. The Journal Of Physiology 2007, 581: 1019-1031. PMID: 17430993, PMCID: PMC2170829, DOI: 10.1113/jphysiol.2006.127027.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnesthetics, LocalBinding SitesCell LineComputer SimulationDose-Response Relationship, DrugErythromelalgiaGanglia, SpinalHumansIon Channel GatingKineticsLidocaineModels, NeurologicalMutationNAV1.7 Voltage-Gated Sodium ChannelNerve Tissue ProteinsNeurons, AfferentSodium Channel BlockersSodium ChannelsTransfectionVoltage-Gated Sodium Channel beta-2 SubunitConceptsErythromelalgia mutationLidocaine inhibitionLocal anesthetic binding siteLocal anestheticsK mutationWild-type Nav1.7Use-dependent inhibitionSlow inactivationSteady-state slow inactivationAnesthetic binding sitesLidocaine sensitivityNeuronal hyperexcitabilityLidocaine treatmentSensory neuronsNaV1.7 currentsErythromelalgiaLidocaineNav1.7Electrophysiological differencesInhibitory effectChannel mutationsSodium channelsHyperexcitabilityK channelsAnesthetics
2006
Sporadic onset of erythermalgia: A gain‐of‐function mutation in Nav1.7
Han C, Rush AM, Dib‐Hajj S, Li S, Xu Z, Wang Y, Tyrrell L, Wang X, Yang Y, Waxman SG. Sporadic onset of erythermalgia: A gain‐of‐function mutation in Nav1.7. Annals Of Neurology 2006, 59: 553-558. PMID: 16392115, DOI: 10.1002/ana.20776.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAmino Acid SequenceCell LineChinaDNA Mutational AnalysisDose-Response Relationship, RadiationElectric StimulationErythromelalgiaExonsFamily HealthHumansLeucineMaleMembrane PotentialsModels, MolecularMutationNAV1.7 Voltage-Gated Sodium ChannelPatch-Clamp TechniquesPhenylalanineSodium ChannelsTransfectionConceptsSporadic casesPeripheral sensory neuronsWhole-cell patch-clamp analysisAsymptomatic family membersPatch-clamp analysisAutosomal dominant disorderMild thermal stimuliSporadic onsetSensory neuronsErythermalgiaAsymptomatic fatherSmall depolarizationSodium channelsFounder mutationDominant disorderClamp analysisChannel activationThermal stimuliPatientsFunction mutationsFamily membersMultigeneration familySingle amino acid substitutionAmino acid substitutionsChinese family
2003
Patterned electrical activity modulates sodium channel expression in sensory neurons
Klein JP, Tendi EA, Dib‐Hajj S, Fields RD, Waxman SG. Patterned electrical activity modulates sodium channel expression in sensory neurons. Journal Of Neuroscience Research 2003, 74: 192-198. PMID: 14515348, DOI: 10.1002/jnr.10768.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsCells, CulturedDown-RegulationElectric StimulationFetusGanglia, SpinalImmunohistochemistryMiceNAV1.8 Voltage-Gated Sodium ChannelNAV1.9 Voltage-Gated Sodium ChannelNerve Growth FactorNerve Tissue ProteinsNeurons, AfferentNeuropeptidesPeripheral NervesPeripheral Nervous System DiseasesRNA, MessengerSodium ChannelsConceptsExpression of Nav1.3Sodium channel expressionNerve growth factorSensory neuronsChannel expressionDorsal root ganglion neuronsEctopic neuronal dischargesPatterned electrical activitySodium channel Nav1.3Development of hyperexcitabilityPeripheral nerve injuryMouse sensory neuronsNeuronal activity levelsSubtype-specific mannerQuantitative polymerase chain reactionNav1.9 mRNANeuropathic painNerve injuryGanglion neuronsNeurotrophic factorPolymerase chain reactionNeuronal dischargeNeuronal activityElectrical stimulationNav1.8
2002
Sodium channels and the molecular basis for pain
Black J, Cummins T, Dib-Hajj S, Waxman S. Sodium channels and the molecular basis for pain. Progress In Inflammation Research 2002, 23-50. DOI: 10.1007/978-3-0348-8129-6_2.ChaptersPrimary sensory neuronsSensory neuronsAction potentialsSpontaneous action potentialsHigh-frequency activityInflammatory painTrigeminal neuronsNociceptive responsesAscending pathwaysPeripheral nervesTissue injuryNoxious stimuliPeripheral targetsPainNeuronsSodium channelsTemperature sensationBrainHigh thresholdNerveMolecular basisInjuryAxonsDRG
2001
Direct Interaction with Contactin Targets Voltage-gated Sodium Channel Nav1.9/NaN to the Cell Membrane*
Liu C, Dib-Hajj S, Black J, Greenwood J, Lian Z, Waxman S. Direct Interaction with Contactin Targets Voltage-gated Sodium Channel Nav1.9/NaN to the Cell Membrane*. Journal Of Biological Chemistry 2001, 276: 46553-46561. PMID: 11581273, DOI: 10.1074/jbc.m108699200.Peer-Reviewed Original ResearchConceptsDorsal root gangliaRoot gangliaSodium channelsSmall sensory neuronsVoltage-gated sodium channelsTrigeminal ganglionNerve endingsC-fibersSensory neuronsNeuron somataChinese hamster ovary cell lineDifferent physiological propertiesGangliaHamster ovary cell lineNeuronal membranesChinese hamster ovary cellsOvary cell lineProtein complexesSurface expressionHamster ovary cellsCell linesAxonsSurface localizationCell membraneOvary cells
2000
Sodium channels and the molecular pathophysiology of pain
Cummins T, Dib-Hajj S, Black J, Waxman S. Sodium channels and the molecular pathophysiology of pain. Progress In Brain Research 2000, 129: 3-19. PMID: 11098678, DOI: 10.1016/s0079-6123(00)29002-x.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsDorsal root gangliaTrigeminal neuronsSodium channelsAction potentialsDorsal root ganglion neuronsSpontaneous action potential activityMolecular pathophysiologyPrimary sensory neuronsPeripheral target tissuesAction potential activitySodium channel expressionChain of neuronsPathological burstingNerve injuryNociceptive pathwaysChronic painGanglion neuronsRoot gangliaSensory neuronsChannel expressionSomatosensory systemPainNeuronsTarget tissuesPathophysiologyLocalization of the tetrodotoxin-resistant sodium channel NaN in nociceptors
Fjell J, Hjelmström P, Hormuzdiar W, Milenkovic M, Aglieco F, Tyrrell L, Dib-Hajj S, Waxman S, Black J. Localization of the tetrodotoxin-resistant sodium channel NaN in nociceptors. Neuroreport 2000, 11: 199-202. PMID: 10683857, DOI: 10.1097/00001756-200001170-00039.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAxonsCorneaFemaleGanglia, SpinalImage Processing, Computer-AssistedImmunohistochemistryMolecular Sequence DataMyelin SheathNAV1.9 Voltage-Gated Sodium ChannelNerve FibersNeurons, AfferentNeuropeptidesNociceptorsPresynaptic TerminalsRanvier's NodesRatsRats, Sprague-DawleySciatic NerveSodium ChannelsTetrodotoxinConceptsSciatic nerveSmall diameter primary sensory neuronsSodium currentTetrodotoxin-resistant sodium channelsTetrodotoxin-resistant sodium currentDorsal root ganglion neuronsSodium channelsPrimary sensory neuronsAxonal sodium currentsNodes of RanvierNociceptive transmissionChannel immunoreactivityGanglion neuronsUnmyelinated fibersAxon terminalsSensory neuronsNerveImmunoreactivityAxonsNeuronsSpecific peptidesNociceptorsIB4CorneaAntibodies
1999
Sodium channels, excitability of primary sensory neurons, and the molecular basis of pain
Waxman S, Cummins T, Dib‐Hajj S, Fjell J, Black J. Sodium channels, excitability of primary sensory neurons, and the molecular basis of pain. Muscle & Nerve 1999, 22: 1177-1187. PMID: 10454712, DOI: 10.1002/(sici)1097-4598(199909)22:9<1177::aid-mus3>3.0.co;2-p.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsPrimary sensory neuronsDRG neuronsSodium channel expressionSodium channel gene expressionSensory neuronsChannel gene expressionSodium channelsChannel expressionSodium currentTTX-sensitive sodium currentAbnormal burst activityNormal DRG neuronsSNS/PN3Resistant sodium currentsDistinct sodium channelsSodium channel geneChannel genesInflammatory painNerve injuryAxonal transectionElectrophysiological abnormalitiesSelective blockadePharmacological approachesBurst activityPain
1997
Schwann cells modulate sodium channel expression in spinal sensory neurons in vitro
Hinson AW, Gu XQ, Dib‐Hajj S, Black JA, Waxman SG. Schwann cells modulate sodium channel expression in spinal sensory neurons in vitro. Glia 1997, 21: 339-349. PMID: 9419009, DOI: 10.1002/(sici)1098-1136(199712)21:4<339::aid-glia1>3.0.co;2-z.Peer-Reviewed Original ResearchConceptsDRG neuronsSC-conditioned mediumSodium channel alphaE15 ratsSodium channelsChannel alphaSodium channel immunoreactivitySpinal sensory neuronsBeta2 subunit mRNASodium channel mRNASodium channel expressionFunctional sodium channelsSodium current densityBeta-subunit mRNAChannel immunoreactivityBeta2 mRNASensory neuronsClamp recordingsChannel expressionChannel mRNAIsoform-specific riboprobesNeuronsBeta1RatsHybridization signalsNaG: A sodium channel‐like mRNA shared by Schwann cells and other neural crest derivatives
Felts PA, Black JA, Dib‐Hajj S, Waxman SG. NaG: A sodium channel‐like mRNA shared by Schwann cells and other neural crest derivatives. Glia 1997, 21: 269-276. PMID: 9383036, DOI: 10.1002/(sici)1098-1136(199711)21:3<269::aid-glia2>3.0.co;2-0.Peer-Reviewed Original ResearchConceptsNeural crest originSchwann cellsGanglion neuronsNeural crest derivativesRat dorsal root ganglion neuronsAdrenal medulla chromaffin cellsDorsal root ganglion neuronsSuperior cervical ganglion neuronsSodium channelsCrest derivativesNeural crestNeuronal cell typesAfferent neuronsAfferent functionSitu hybridizationSensory neuronsNeural elementsSensory functionChromaffin cellsNAG mRNANeuronsRT-PCRNAGCell typesPresent study