2024
Disordered but effective: short linear motifs as gene therapy targets for hyperexcitability disorders
Dib-Hajj S, Waxman S. Disordered but effective: short linear motifs as gene therapy targets for hyperexcitability disorders. Journal Of Clinical Investigation 2024, 134: e182198. PMID: 38949022, PMCID: PMC11213459, DOI: 10.1172/jci182198.Peer-Reviewed Original ResearchConceptsTetrodotoxin-sensitiveHyperexcitability disordersSensory neuronsExcitability of sensory neuronsGene therapy modalitiesPeripheral sensory neuronsVoltage-gated sodiumMinimal side effectsGene therapyInduce analgesiaTherapy modalitiesSide effectsTherapeutic strategiesNav channelsAttenuating excitationIn vivoHyperexcitabilityAnalgesiaNeuronsDisordersPainTherapyGenesBiodistributionRats
2023
A TRPM7 mutation linked to familial trigeminal neuralgia: Omega current and hyperexcitability of trigeminal ganglion neurons
Gualdani R, Gailly P, Yuan J, Yerna X, Di Stefano G, Truini A, Cruccu G, Dib-Hajj S, Waxman S. A TRPM7 mutation linked to familial trigeminal neuralgia: Omega current and hyperexcitability of trigeminal ganglion neurons. Biophysical Journal 2023, 122: 321a. DOI: 10.1016/j.bpj.2022.11.1799.Peer-Reviewed Original Research
2020
Two independent mouse lines carrying the Nav1.7 I228M gain-of-function variant display dorsal root ganglion neuron hyperexcitability but a minimal pain phenotype
Chen L, Wimalasena NK, Shim J, Han C, Lee SI, Gonzalez-Cano R, Estacion M, Faber CG, Lauria G, Dib-Hajj S, Woolf CJ, Waxman SG. Two independent mouse lines carrying the Nav1.7 I228M gain-of-function variant display dorsal root ganglion neuron hyperexcitability but a minimal pain phenotype. Pain 2020, 162: 1758-1770. PMID: 33323889, PMCID: PMC8119301, DOI: 10.1097/j.pain.0000000000002171.Peer-Reviewed Original ResearchConceptsSmall fiber neuropathyDorsal root ganglion neuron hyperexcitabilityNeuron hyperexcitabilityMouse linesIdiopathic small fiber neuropathyIntraepidermal nerve fiber lossPainful small fiber neuropathyFunction variantsDRG neuron hyperexcitabilityNerve fiber lossSodium channel Nav1.7Multielectrode array recordingsNeuropathic painThermal hyperalgesiaDRG neuronsFiber lossPain disordersSensory dysfunctionNeuropathy phenotypePain phenotypesM miceSensory neuronsHyperexcitabilityChannel Nav1.7Independent mouse lines
2007
A Nav1.7 channel mutation associated with hereditary erythromelalgia contributes to neuronal hyperexcitability and displays reduced lidocaine sensitivity
Sheets PL, Jackson JO, Waxman SG, Dib‐Hajj S, Cummins TR. A Nav1.7 channel mutation associated with hereditary erythromelalgia contributes to neuronal hyperexcitability and displays reduced lidocaine sensitivity. The Journal Of Physiology 2007, 581: 1019-1031. PMID: 17430993, PMCID: PMC2170829, DOI: 10.1113/jphysiol.2006.127027.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnesthetics, LocalBinding SitesCell LineComputer SimulationDose-Response Relationship, DrugErythromelalgiaGanglia, SpinalHumansIon Channel GatingKineticsLidocaineModels, NeurologicalMutationNAV1.7 Voltage-Gated Sodium ChannelNerve Tissue ProteinsNeurons, AfferentSodium Channel BlockersSodium ChannelsTransfectionVoltage-Gated Sodium Channel beta-2 SubunitConceptsErythromelalgia mutationLidocaine inhibitionLocal anesthetic binding siteLocal anestheticsK mutationWild-type Nav1.7Use-dependent inhibitionSlow inactivationSteady-state slow inactivationAnesthetic binding sitesLidocaine sensitivityNeuronal hyperexcitabilityLidocaine treatmentSensory neuronsNaV1.7 currentsErythromelalgiaLidocaineNav1.7Electrophysiological differencesInhibitory effectChannel mutationsSodium channelsHyperexcitabilityK channelsAnesthetics