2022
Physiological calcium combined with electrical pacing accelerates maturation of human engineered heart tissue
Shen S, Sewanan LR, Shao S, Halder SS, Stankey P, Li X, Campbell SG. Physiological calcium combined with electrical pacing accelerates maturation of human engineered heart tissue. Stem Cell Reports 2022, 17: 2037-2049. PMID: 35931080, PMCID: PMC9481907, DOI: 10.1016/j.stemcr.2022.07.006.Peer-Reviewed Original ResearchConceptsHuman-induced pluripotent stem cell-derived cardiomyocytesWide potential applicationsRegenerative medicineScalable platformElectrical pacingPotential applicationsForce-frequency behaviorCardiac troponin IPluripotent stem cell-derived cardiomyocytesStem cell-derived cardiomyocytesAdrenergic responseCell-derived cardiomyocytesFunctional maturationHiPSC-CM maturationTroponin IClinical researchTwitch kineticsHeart tissuePhysiological CaPacingPhysiological calciumApplicationsBasic researchRole of CaMaturation
2019
Use of Human Cells and Heart Muscle Tissue Patches as Therapeutics for Heart Diseases
Batty L, Ellis M, Anderson C, Luo J, Riaz M, Park J, Das S, Huang Y, Jacoby D, Campbell S, Qyang Y. Use of Human Cells and Heart Muscle Tissue Patches as Therapeutics for Heart Diseases. 2019 DOI: 10.1016/b978-0-12-801238-3.65542-3.ChaptersCardiac tissue engineeringThree-dimensional tissuesCardiovascular disease epidemicRegenerative medicineTissue engineeringCardiac patchesCardiovascular healthHeart diseaseInfarcted tissueClinical useHydrogel matrixStem cellsCardiomyocytesTissue patchesRecent innovationsDisease epidemicsTissueFurther researchHuman cells