Steve Stayrook
Associate Research Scientist in PharmacologyCards
About
Research
Publications
2024
Structural insights into the role and targeting of EGFRvIII
Bagchi A, Stayrook S, Xenaki K, Starbird C, Doulkeridou S, El Khoulati R, Roovers R, Schmitz K, van Bergen En Henegouwen P, Ferguson K. Structural insights into the role and targeting of EGFRvIII. Structure 2024, 32: 1367-1380.e6. PMID: 38908376, PMCID: PMC11380598, DOI: 10.1016/j.str.2024.05.018.Peer-Reviewed Original Research
2022
Biochemical and structural basis for differential inhibitor sensitivity of EGFR with distinct exon 19 mutations
van Alderwerelt van Rosenburgh I, Lu D, Grant M, Stayrook S, Phadke M, Walther Z, Goldberg S, Politi K, Lemmon M, Ashtekar K, Tsutsui Y. Biochemical and structural basis for differential inhibitor sensitivity of EGFR with distinct exon 19 mutations. Nature Communications 2022, 13: 6791. PMID: 36357385, PMCID: PMC9649653, DOI: 10.1038/s41467-022-34398-z.Peer-Reviewed Original ResearchRational design of photosynthetic reaction center protein maquettes
Ennist N, Stayrook S, Dutton P, Moser C. Rational design of photosynthetic reaction center protein maquettes. Frontiers In Molecular Biosciences 2022, 9: 997295. PMID: 36213121, PMCID: PMC9532970, DOI: 10.3389/fmolb.2022.997295.Peer-Reviewed Original ResearchNatural photosystemsCrystal structureSolar-to-fuel energy conversionAssemble metal ionsElectron-transfer reactionsPhotosynthetic charge separationPhotosynthetic reaction centersCharge separationElectron tunneling theoryChemical fuelsMetal ionsReaction centerElectron donorHolo-stateStructural transitionEnergy conversionElectron acceptorModular strategySpectroscopic assaysReactionPhoton energyCrystalState of assemblyProtein designProduction of biofuelsDe novo protein design of photochemical reaction centers
Ennist N, Zhao Z, Stayrook S, Discher B, Dutton P, Moser C. De novo protein design of photochemical reaction centers. Nature Communications 2022, 13: 4937. PMID: 35999239, PMCID: PMC9399245, DOI: 10.1038/s41467-022-32710-5.Peer-Reviewed Original ResearchConceptsCharge separationSolar-to-fuel energy conversionReaction centerLight-driven charge separationX-ray crystal structurePhotosynthetic reaction center proteinCharge separation lifetimeSolar fuel productionTransient absorption spectroscopyPhotosynthetic reaction centersPhotochemical charge separationModify natural proteinsPhotochemical reaction centerReaction center proteinCluster oxidationRedox centersCrystal structureAbsorption spectroscopyElectron transfer activityNatural protein structuresDe novo protein designPhotosynthetic protein complexesEnergy conversionX-rayProtein frameworkGlioblastoma mutations alter EGFR dimer structure to prevent ligand bias
Hu C, Leche CA, Kiyatkin A, Yu Z, Stayrook SE, Ferguson KM, Lemmon MA. Glioblastoma mutations alter EGFR dimer structure to prevent ligand bias. Nature 2022, 602: 518-522. PMID: 35140400, PMCID: PMC8857055, DOI: 10.1038/s41586-021-04393-3.Peer-Reviewed Original Research
2021
Structural basis for ligand reception by anaplastic lymphoma kinase
Li T, Stayrook SE, Tsutsui Y, Zhang J, Wang Y, Li H, Proffitt A, Krimmer SG, Ahmed M, Belliveau O, Walker IX, Mudumbi KC, Suzuki Y, Lax I, Alvarado D, Lemmon MA, Schlessinger J, Klein DE. Structural basis for ligand reception by anaplastic lymphoma kinase. Nature 2021, 600: 148-152. PMID: 34819665, PMCID: PMC8639777, DOI: 10.1038/s41586-021-04141-7.Peer-Reviewed Original ResearchROR and RYK extracellular region structures suggest that receptor tyrosine kinases have distinct WNT-recognition modes
Shi F, Mendrola JM, Sheetz JB, Wu N, Sommer A, Speer KF, Noordermeer JN, Kan ZY, Perry K, Englander SW, Stayrook SE, Fradkin LG, Lemmon MA. ROR and RYK extracellular region structures suggest that receptor tyrosine kinases have distinct WNT-recognition modes. Cell Reports 2021, 37: 109834. PMID: 34686333, PMCID: PMC8650758, DOI: 10.1016/j.celrep.2021.109834.Peer-Reviewed Original ResearchAnimalsDrosophila melanogasterDrosophila ProteinsModels, MolecularNerve Tissue ProteinsProtein BindingProtein ConformationProtein Interaction Domains and MotifsProtein-Tyrosine KinasesProto-Oncogene ProteinsReceptor Protein-Tyrosine KinasesSf9 CellsStructure-Activity RelationshipWnt ProteinsWnt Signaling PathwayStructural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases
Sheetz J, Mathea S, Karvonen H, Malhotra K, Chatterjee D, Niininen W, Perttila R, Preuss F, Suresh K, Stayrook S, Tsutsui Y, Radhakrishnan R, Ungureanu D, Knapp S, Lemmon M. Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases. The FASEB Journal 2021, 35 DOI: 10.1096/fasebj.2021.35.s1.02446.Peer-Reviewed Original ResearchReceptor tyrosine kinasesPseudokinase domainTyrosine kinaseTyrosine kinase-mediated signalingKey cellular processesKinase-mediated signalingExtracellular cuesViable drug targetTransduce signalsCellular processesEmbryonic developmentPseudokinasesTissue homeostasisFuture dissectionReceptor dimerizationStructural insightsKinase activityCancer hallmarksSignaling mechanismDrug targetsPutative routesKinaseOncogenic driversSmall moleculesPhosphotransfer
2020
Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases
Sheetz JB, Mathea S, Karvonen H, Malhotra K, Chatterjee D, Niininen W, Perttilä R, Preuss F, Suresh K, Stayrook SE, Tsutsui Y, Radhakrishnan R, Ungureanu D, Knapp S, Lemmon MA. Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases. Molecular Cell 2020, 79: 390-405.e7. PMID: 32619402, PMCID: PMC7543951, DOI: 10.1016/j.molcel.2020.06.018.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBaculoviridaeBinding SitesCell Adhesion MoleculesCell LineCloning, MolecularCrystallography, X-RayGene ExpressionHumansMiceModels, MolecularPrecursor Cells, B-LymphoidProtein BindingProtein Conformation, alpha-HelicalProtein Conformation, beta-StrandProtein Interaction Domains and MotifsProtein Kinase InhibitorsReceptor Protein-Tyrosine KinasesReceptor Tyrosine Kinase-like Orphan ReceptorsReceptors, Eph FamilyRecombinant ProteinsSf9 CellsSmall Molecule LibrariesSpodopteraStructural Homology, ProteinSubstrate SpecificityConceptsInsulin receptor kinasePseudokinase domainReceptor tyrosine kinasesTyrosine kinaseNon-catalytic functionsATP-binding pocketType II inhibitorsDomain plasticityActivation loopReceptor kinaseInactive conformationStructural insightsPseudokinasesATP siteStructural comparisonAromatic residuesKinaseAlternative interactionsApparent lackImportant roleDomainWntMotifROR1Residues
2018
Combination of aptamer and drug for reversible anticoagulation in cardiopulmonary bypass
Gunaratne R, Kumar S, Frederiksen J, Stayrook S, Lohrmann J, Perry K, Bompiani K, Chabata C, Thalji N, Ho M, Arepally G, Camire R, Krishnaswamy S, Sullenger B. Combination of aptamer and drug for reversible anticoagulation in cardiopulmonary bypass. Nature Biotechnology 2018, 36: 606-613. PMID: 29863725, PMCID: PMC6349032, DOI: 10.1038/nbt.4153.Peer-Reviewed Original Research