2024
Glis2 is an early effector of polycystin signaling and a target for therapy in polycystic kidney disease
Zhang C, Rehman M, Tian X, Pei S, Gu J, Bell T, Dong K, Tham M, Cai Y, Wei Z, Behrens F, Jetten A, Zhao H, Lek M, Somlo S. Glis2 is an early effector of polycystin signaling and a target for therapy in polycystic kidney disease. Nature Communications 2024, 15: 3698. PMID: 38693102, PMCID: PMC11063051, DOI: 10.1038/s41467-024-48025-6.Peer-Reviewed Original ResearchConceptsMouse models of autosomal dominant polycystic kidney diseaseModel of autosomal dominant polycystic kidney diseasePolycystin signalingAutosomal dominant polycystic kidney diseasePolycystin-1Polycystic kidney diseaseTreat autosomal dominant polycystic kidney diseaseGlis2Primary ciliaKidney tubule cellsSignaling pathwayMouse modelDominant polycystic kidney diseasePotential therapeutic targetTranslatomeAntisense oligonucleotidesKidney diseasePolycystinMouse kidneyFunctional effectorsCyst formationTherapeutic targetInactivationFunctional targetPharmacological targets
2023
The C-terminal tail of polycystin-1 suppresses cystic disease in a mitochondrial enzyme-dependent fashion
Onuchic L, Padovano V, Schena G, Rajendran V, Dong K, Shi X, Pandya R, Rai V, Gresko N, Ahmed O, Lam T, Wang W, Shen H, Somlo S, Caplan M. The C-terminal tail of polycystin-1 suppresses cystic disease in a mitochondrial enzyme-dependent fashion. Nature Communications 2023, 14: 1790. PMID: 36997516, PMCID: PMC10063565, DOI: 10.1038/s41467-023-37449-1.Peer-Reviewed Original ResearchConceptsPolycystin-1Nicotinamide nucleotide transhydrogenaseTerminal tailCystic phenotypeAutosomal dominant polycystic kidney diseaseCyst cell proliferationC-terminal domainAmino acid residuesLethal monogenic disorderC-terminal cleavageNucleotide transhydrogenaseAcid residuesMitochondrial functionTransgenic expressionPKD1 geneRedox stateShort fragmentsCell proliferationMonogenic disordersDominant polycystic kidney diseasePolycystic kidney diseaseGene therapy strategiesProteinPhenotypeFragmentsHypomorphic PKD1 Alleles Impact Disease Variability in Autosomal Dominant Polycystic Kidney Disease
Gulati A, Dahl N, Hartung E, Clark S, Moudgil A, Goodwin J, Somlo S. Hypomorphic PKD1 Alleles Impact Disease Variability in Autosomal Dominant Polycystic Kidney Disease. Kidney360 2023, 4: 387-392. PMID: 36706243, PMCID: PMC10103195, DOI: 10.34067/kid.0000000000000064.Peer-Reviewed Original Research
2022
XBP1 Activation Reduces Severity of Polycystic Kidney Disease due to a Nontruncating Polycystin-1 Mutation in Mice
Krappitz M, Bhardwaj R, Dong K, Staudner T, Yilmaz DE, Pioppini C, Westergerling P, Ruemmele D, Hollmann T, Nguyen TA, Cai Y, Gallagher AR, Somlo S, Fedeles S. XBP1 Activation Reduces Severity of Polycystic Kidney Disease due to a Nontruncating Polycystin-1 Mutation in Mice. Journal Of The American Society Of Nephrology 2022, 34: 110-121. PMID: 36270750, PMCID: PMC10101557, DOI: 10.1681/asn.2021091180.Peer-Reviewed Original ResearchConceptsPolycystin-1Polycystin-2Functional polycystin-1Amino acid substitution mutationsAutosomal dominant polycystic kidney diseaseIntegral membrane proteinsTranscription factor XBP1Unfolded protein responsePost-translational maturationAcid substitution mutationsEndoplasmic reticulum chaperoneCiliary traffickingXBP1 activityChaperone functionIntegral membraneActive XBP1Polycystic kidney diseaseMembrane proteinsPC1 functionsPrimary ciliaProtein responseHypomorphic mutationsTransgenic activationSubstitution mutationsTransgenic expressionAn update on ductal plate malformations and fibropolycystic diseases of the liver
Mirza H, Besse W, Somlo S, Weinreb J, Kenney B, Jain D. An update on ductal plate malformations and fibropolycystic diseases of the liver. Human Pathology 2022, 132: 102-113. PMID: 35777701, DOI: 10.1016/j.humpath.2022.06.022.Peer-Reviewed Original ResearchConceptsDuctal plate malformationLiver diseaseAdult polycystic liver diseaseAutosomal dominant polycystic kidneyFibropolycystic liver diseaseIsolated liver involvementCongenital hepatic fibrosisPolycystic liver diseaseVon Meyenburg complexesGenetic underpinningsMultiple clinical phenotypesFibropolycystic diseasePortal hypertensionCaroli's diseaseLiver involvementLiver cystsMeyenburg complexesHepatic fibrosisFibrocystic lesionsHepatocellular malignanciesCyst enlargementAbnormal organ developmentPolycystic kidneysAnimal modelsHepatocellular malignancyGenetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference
Participants K, Köttgen A, Gall E, Halbritter J, Kiryluk K, Mallett A, Parekh R, Rasouly H, Sampson M, Tin A, Antignac C, Ars E, Bergmann C, Bleyer A, Bockenhauer D, Devuyst O, Florez J, Fowler K, Franceschini N, Fukagawa M, Gale D, Gbadegesin R, Goldstein D, Grams M, Greka A, Gross O, Guay-Woodford L, Harris P, Hoefele J, Hung A, Knoers N, Kopp J, Kretzler M, Lanktree M, Lipska-Ziętkiewicz B, Nicholls K, Nozu K, Ojo A, Parsa A, Pattaro C, Pei Y, Pollak M, Rhee E, Sanna-Cherchi S, Savige J, Sayer J, Scolari F, Sedor J, Sim X, Somlo S, Susztak K, Tayo B, Torra R, van Eerde A, Weinstock A, Winkler C, Wuttke M, Zhang H, King J, Cheung M, Jadoul M, Winkelmayer W, Gharavi A. Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International 2022, 101: 1126-1141. PMID: 35460632, PMCID: PMC9922534, DOI: 10.1016/j.kint.2022.03.019.Peer-Reviewed Original ResearchConceptsUse of genomicsUse of geneticsGenetic findingsGenome variationNumerous genesMolecular dataGenetic dataComplex kidney diseaseGenetic variantsGeneticsGenesEnvironmental factorsPolygenic scoresMonogenic kidney diseaseGenomicsChronic kidney diseaseImproved diagnosticsInheritanceKidney diseaseData resourcesOpen data resourcesPhenotyping
2021
Interdependent Regulation of Polycystin Expression Influences Starvation-Induced Autophagy and Cell Death
Decuypere JP, Van Giel D, Janssens P, Dong K, Somlo S, Cai Y, Mekahli D, Vennekens R. Interdependent Regulation of Polycystin Expression Influences Starvation-Induced Autophagy and Cell Death. International Journal Of Molecular Sciences 2021, 22: 13511. PMID: 34948309, PMCID: PMC8706473, DOI: 10.3390/ijms222413511.Peer-Reviewed Original ResearchConceptsProximal tubular epithelial cellsAutosomal dominant polycystic kidney diseaseEarly-stage ADPKD patientsCell deathPC2 expressionDominant polycystic kidney diseaseTubular epithelial cellsRenal cell survivalPolycystin-1Polycystic kidney diseaseCell survivalPolycystin-2Basal autophagyAutophagic cell survivalCell death resistanceADPKD progressionKidney diseaseADPKD patientsLess cell deathPC1 levelsChronic starvationHealthy individualsDuct cellsEpithelial cellsDeath
2020
Advancing Nephrology: Division Leaders Advise ASN
Braden GL, Chapman A, Ellison DH, Gadegbeku CA, Gurley SB, Igarashi P, Kelepouris E, Moxey-Mims MM, Okusa MD, Plumb TJ, Quaggin SE, Salant DJ, Segal MS, Shankland SJ, Somlo S. Advancing Nephrology: Division Leaders Advise ASN. Clinical Journal Of The American Society Of Nephrology 2020, 16: 319-327. PMID: 32792352, PMCID: PMC7863658, DOI: 10.2215/cjn.01550220.Peer-Reviewed Original Research
2019
ALG9 Mutation Carriers Develop Kidney and Liver Cysts
Besse W, Chang AR, Luo JZ, Triffo WJ, Moore BS, Gulati A, Hartzel DN, Mane S, Center R, Torres VE, Somlo S, Mirshahi T. ALG9 Mutation Carriers Develop Kidney and Liver Cysts. Journal Of The American Society Of Nephrology 2019, 30: 2091-2102. PMID: 31395617, PMCID: PMC6830805, DOI: 10.1681/asn.2019030298.Peer-Reviewed Original ResearchConceptsProteins polycystin-1Autosomal dominant polycystic kidney diseaseDisease genesRare loss-of-function variantsN-glycan precursorsNovel disease genesLoss-of-function variantsEndoplasmic reticulum lumenLoss-of-function mutationsMonogenic kidney diseaseWhole-exome sequencingGenotype-phenotype correlationProtein biogenesisProtein maturationReticulum lumenPolycystin-1Endoplasmic reticulumGene productsPopulation-based cohortCell-based assaysPhenotypic characterizationPolycystic phenotypeMutation carrier stateDefective glycosylationDominant polycystic kidney disease
2018
Mcp1 Promotes Macrophage-Dependent Cyst Expansion in Autosomal Dominant Polycystic Kidney Disease
Cassini MF, Kakade VR, Kurtz E, Sulkowski P, Glazer P, Torres R, Somlo S, Cantley LG. Mcp1 Promotes Macrophage-Dependent Cyst Expansion in Autosomal Dominant Polycystic Kidney Disease. Journal Of The American Society Of Nephrology 2018, 29: 2471-2481. PMID: 30209078, PMCID: PMC6171277, DOI: 10.1681/asn.2018050518.Peer-Reviewed Original ResearchConceptsAutosomal dominant polycystic kidney diseaseSingle knockout miceTubular cell injuryDominant polycystic kidney diseaseCyst growthPolycystic kidney diseaseKidney diseaseCell injuryMonocyte chemoattractant protein-1Alternative activation phenotypeChemoattractant protein-1Double knockout miceOrthologous mouse modelCell proliferative rateRenal functionMacrophage accumulationMacrophage infiltrationReceptor CCR2Cystic dilationMacrophage numbersFunctional improvementOxidative DNA damageMouse modelActivation phenotypeCyst expansionTREX1 Mutation Causing Autosomal Dominant Thrombotic Microangiopathy and CKD—A Novel Presentation
Gulati A, Bale AE, Dykas DJ, Bia MJ, Danovitch GM, Moeckel GW, Somlo S, Dahl NK. TREX1 Mutation Causing Autosomal Dominant Thrombotic Microangiopathy and CKD—A Novel Presentation. American Journal Of Kidney Diseases 2018, 72: 895-899. PMID: 29941221, DOI: 10.1053/j.ajkd.2018.05.006.Peer-Reviewed Original ResearchConceptsRenal thrombotic microangiopathyThrombotic microangiopathyTREX1 mutationsRetinal microangiopathyChronic kidney diseaseRepair exonuclease 1Whole-exome sequencingSignificant brainSymptomatic brainTREX1 variantsKidney involvementClinical presentationKidney diseaseCerebral leukodystrophyComplement dysregulationMicroangiopathyClinical importanceDiverse causesComplement regulationNovel presentationSubstantial proportionBrainSignificant proportionGenetic determinantsCauseMonoallelic Mutations to DNAJB11 Cause Atypical Autosomal-Dominant Polycystic Kidney Disease
Gall E, Olson RJ, Besse W, Heyer CM, Gainullin VG, Smith JM, Audrézet MP, Hopp K, Porath B, Shi B, Baheti S, Senum SR, Arroyo J, Madsen CD, Férec C, Joly D, Jouret F, Fikri-Benbrahim O, Charasse C, Coulibaly JM, Yu AS, Khalili K, Pei Y, Somlo S, Le Meur Y, Torres VE, Group G, Group T, Disease T, Harris PC. Monoallelic Mutations to DNAJB11 Cause Atypical Autosomal-Dominant Polycystic Kidney Disease. American Journal Of Human Genetics 2018, 102: 832-844. PMID: 29706351, PMCID: PMC5986722, DOI: 10.1016/j.ajhg.2018.03.013.Peer-Reviewed Original ResearchConceptsWhole-exome sequencingEnd-stage renal diseaseAutosomal dominant polycystic kidney diseasePhenotypically similar familiesNext-generation sequencingDevelopment of kidney cystsCystic kidneysPolycystic kidney diseaseTargeted next-generation sequencingFrameshift changesInterstitial fibrosisKidney diseasePhenotypic hybridsMissense variantsMembrane proteinsTrafficking defectsADTKDEpisodes of goutLate-onset end-stage renal diseaseProgressive interstitial fibrosisAffected membersMultigenerational familiesCo-factorPhenotypic overlapPartial phenotypic overlapGenomic Analysis to Avoid Misdiagnosis of Adults With Bilateral Renal Cysts.
Gulati A, Bae KT, Somlo S, Watnick T. Genomic Analysis to Avoid Misdiagnosis of Adults With Bilateral Renal Cysts. Annals Of Internal Medicine 2018, 169: 130-131. PMID: 29582070, PMCID: PMC7196958, DOI: 10.7326/l17-0644.Peer-Reviewed Original ResearchPolycystin-2-dependent control of cardiomyocyte autophagy
Criollo A, Altamirano F, Pedrozo Z, Schiattarella GG, Li DL, Rivera-Mejías P, Sotomayor-Flores C, Parra V, Villalobos E, Battiprolu PK, Jiang N, May HI, Morselli E, Somlo S, de Smedt H, Gillette TG, Lavandero S, Hill JA. Polycystin-2-dependent control of cardiomyocyte autophagy. Journal Of Molecular And Cellular Cardiology 2018, 118: 110-121. PMID: 29518398, DOI: 10.1016/j.yjmcc.2018.03.002.Peer-Reviewed Original ResearchConceptsAutosomal dominant polycystic kidney diseaseIntracellular CaCardiomyocyte autophagyAutophagic fluxBAPTA-AMDominant polycystic kidney diseaseStress-induced autophagySarcoplasmic reticulum CaPolycystic kidney diseasePolycystin-2Impaired autophagic fluxKidney diseaseKnockout miceConsiderable evidence pointsMTOR inhibitionReticulum CaExtracellular CaMultiple cell typesAutophagic activityAutophagy inductionHomeostasisAutophagyEvidence pointsAutophagic controlCell typesGlutamine metabolism via glutaminase 1 in autosomal-dominant polycystic kidney disease
Soomro I, Sun Y, Li Z, Diggs L, Hatzivassiliou G, Thomas AG, Rais R, Parker SJ, Slusher BS, Kimmelman AC, Somlo S, Skolnik EY. Glutamine metabolism via glutaminase 1 in autosomal-dominant polycystic kidney disease. Nephrology Dialysis Transplantation 2018, 33: 1343-1353. PMID: 29420817, PMCID: PMC6070111, DOI: 10.1093/ndt/gfx349.Peer-Reviewed Original ResearchConceptsCyst growthCB-839Mouse modelGlutaminase 1Glutamine metabolismAutosomal dominant polycystic kidney disease cellsAutosomal dominant polycystic kidney diseaseCyst-lining epithelial cellsNormal human kidneyCompensatory metabolic changesInhibited mammalian targetPolycystic kidney diseaseCyst-lining epitheliaTumor cell proliferationKidney diseaseAnimal modelsGLS1 inhibitionHuman ADPKD kidneysHuman kidneyMammalian targetVariable outcomesCyst formationMetabolic changesADPKDMetabolism of glutamineA noncoding variant in GANAB explains isolated polycystic liver disease (PCLD) in a large family
Besse W, Choi J, Ahram D, Mane S, Sanna‐Cherchi S, Torres V, Somlo S. A noncoding variant in GANAB explains isolated polycystic liver disease (PCLD) in a large family. Human Mutation 2018, 39: 378-382. PMID: 29243290, PMCID: PMC5805583, DOI: 10.1002/humu.23383.Peer-Reviewed Original ResearchConceptsLoss-of-function variantsSequence analysis pipelineWhole-exome sequencing analysisExome sequencing dataExome sequencing analysisBase pair deletionSkipping of exonIsolated polycystic liver diseaseNoncoding variantsLinkage analysisDisease genesSequence dataGene discoveryMinigene assayLinkage disequilibriumCoding regionSNP genotypingSequence analysisGenomic evaluationPolycystic liver diseaseSplice donorIdentified mutationsMutation detectionPair deletionGANABGanetespib limits ciliation and cystogenesis in autosomal‐dominant polycystic kidney disease (ADPKD)
Nikonova AS, Deneka AY, Kiseleva AA, Korobeynikov V, Gaponova A, Serebriiskii IG, Kopp MC, Hensley HH, Seeger‐Nukpezah T, Somlo S, Proia DA, Golemis EA. Ganetespib limits ciliation and cystogenesis in autosomal‐dominant polycystic kidney disease (ADPKD). The FASEB Journal 2018, 32: 2735-2746. PMID: 29401581, PMCID: PMC5901382, DOI: 10.1096/fj.201700909r.Peer-Reviewed Original ResearchConceptsAutosomal dominant polycystic kidney diseasePolycystic kidney diseaseKidney diseaseEnd-stage renal diseaseLoss of Pkd1Conditional mouse modelHeat shock protein-90 clientsRenal diseaseKidney enlargementClinical Hsp90 inhibitorsRenal cystsAmeliorated symptomsMouse modelNew biologic activityCiliary lossCystic growthDiseaseBiologic activityGlycolysis inhibitorGanetespibADPKD pathogenesisVivo lossHsp90 inhibitorsHsp90 inhibitionRenal cilia
2017
Whole exome sequencing: a state-of-the-art approach for defining (and exploring!) genetic landscapes in pediatric nephrology
Gulati A, Somlo S. Whole exome sequencing: a state-of-the-art approach for defining (and exploring!) genetic landscapes in pediatric nephrology. Pediatric Nephrology 2017, 33: 745-761. PMID: 28660367, DOI: 10.1007/s00467-017-3698-0.Peer-Reviewed Original ResearchConceptsWhole-exome sequencingNew high-throughput sequencing techniquesHigh-throughput sequencing techniquesConventional genomic approachesNovel gene discoveryNext-generation sequencing technologiesNovel genetic findingsHuman reference genomeExome sequencingGenomic approachesGene discoveryReference genomeHuman genomeSequencing technologiesSequencing techniquesGenetic landscapeLinkage analysisGenomeBiological dataGenetic findingsSequencingPhenotypic misclassificationRecent studiesComprehensive genomic testingPowerful toolIsolated polycystic liver disease genes define effectors of polycystin-1 function
Besse W, Dong K, Choi J, Punia S, Fedeles SV, Choi M, Gallagher AR, Huang EB, Gulati A, Knight J, Mane S, Tahvanainen E, Tahvanainen P, Sanna-Cherchi S, Lifton RP, Watnick T, Pei YP, Torres VE, Somlo S. Isolated polycystic liver disease genes define effectors of polycystin-1 function. Journal Of Clinical Investigation 2017, 127: 1772-1785. PMID: 28375157, PMCID: PMC5409105, DOI: 10.1172/jci90129.Peer-Reviewed Original ResearchMeSH KeywordsAdultAnimalsCalcium-Binding ProteinsCell Line, TransformedCystsEndoplasmic ReticulumFemaleGenome-Wide Association StudyGlucosidasesGlucosyltransferasesHeterozygoteHumansIntracellular Signaling Peptides and ProteinsLiver DiseasesMaleMembrane ProteinsMiceMolecular ChaperonesMutationRNA-Binding ProteinsSEC Translocation ChannelsTRPP Cation ChannelsConceptsPolycystin-1 functionPolycystin-1Protein biogenesis pathwaysGenome-wide basisPolycystic liver diseaseLoss-of-function mutationsWhole-exome sequencingHeterozygous loss-of-function mutationsBiogenesis pathwayLoss of functionAdditional genesDisease genesGene productsCell line modelsCandidate genesExome sequencingEndoplasmic reticulumCausative genesFunction mutationsGenesAutosomal dominant polycystic kidney diseaseDominant polycystic kidney diseaseSec63Defective maturationKidney cystsCiliary Mechanisms of Cyst Formation in Polycystic Kidney Disease
Ma M, Gallagher AR, Somlo S. Ciliary Mechanisms of Cyst Formation in Polycystic Kidney Disease. Cold Spring Harbor Perspectives In Biology 2017, 9: a028209. PMID: 28320755, PMCID: PMC5666631, DOI: 10.1101/cshperspect.a028209.Peer-Reviewed Original ResearchConceptsPolycystin-2Autosomal dominant polycystic kidney diseaseCalcium-mediated signalsRole of ciliaDisruption of ciliaPolycystic kidney diseaseCellular processesCausal genesTransmembrane proteinTissue homeostasisCilia functionPrimary ciliaPolycystinsGenetic studiesHomeostatic maintenanceSignal integrationUnknown mechanismApical surfaceNephron structuresCiliaKidney tubule cellsIntact ciliaPrivileged compartmentActive remodelingTubule structure